The Future of Consumer Edge-AI Computing
- URL: http://arxiv.org/abs/2210.10514v3
- Date: Tue, 18 Jun 2024 13:15:55 GMT
- Title: The Future of Consumer Edge-AI Computing
- Authors: Stefanos Laskaridis, Stylianos I. Venieris, Alexandros Kouris, Rui Li, Nicholas D. Lane,
- Abstract summary: Deep Learning has rapidly infiltrated the consumer end, mainly thanks to hardware acceleration across devices.
As we look towards the future, it is evident that isolated hardware will be insufficient.
We introduce a novel paradigm centered around EdgeAI-Hub devices, designed to reorganise and optimise compute resources and data access at the consumer edge.
- Score: 58.445652425379855
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the last decade, Deep Learning has rapidly infiltrated the consumer end, mainly thanks to hardware acceleration across devices. However, as we look towards the future, it is evident that isolated hardware will be insufficient. Increasingly complex AI tasks demand shared resources, cross-device collaboration, and multiple data types, all without compromising user privacy or quality of experience. To address this, we introduce a novel paradigm centered around EdgeAI-Hub devices, designed to reorganise and optimise compute resources and data access at the consumer edge. To this end, we lay a holistic foundation for the transition from on-device to Edge-AI serving systems in consumer environments, detailing their components, structure, challenges and opportunities.
Related papers
- Implementation of Big AI Models for Wireless Networks with Collaborative Edge Computing [10.524645516703643]
Training big AI models poses significant challenges to edge devices.
Traditional approaches usually resort to aggregating training data and sending it to a remote cloud for centralized training.
We propose collaborative edge training, a novel training mechanism that orchestrates a group of trusted edge devices as a resource pool.
arXiv Detail & Related papers (2024-04-27T03:09:39Z) - The Security and Privacy of Mobile Edge Computing: An Artificial Intelligence Perspective [64.36680481458868]
Mobile Edge Computing (MEC) is a new computing paradigm that enables cloud computing and information technology (IT) services to be delivered at the network's edge.
This paper provides a survey of security and privacy in MEC from the perspective of Artificial Intelligence (AI)
We focus on new security and privacy issues, as well as potential solutions from the viewpoints of AI.
arXiv Detail & Related papers (2024-01-03T07:47:22Z) - Green Edge AI: A Contemporary Survey [46.11332733210337]
The transformative power of AI is derived from the utilization of deep neural networks (DNNs)
Deep learning (DL) is increasingly being transitioned to wireless edge networks in proximity to end-user devices (EUDs)
Despite its potential, edge AI faces substantial challenges, mostly due to the dichotomy between the resource limitations of wireless edge networks and the resource-intensive nature of DL.
arXiv Detail & Related papers (2023-12-01T04:04:37Z) - The Internet of Senses: Building on Semantic Communications and Edge
Intelligence [67.75406096878321]
The Internet of Senses (IoS) holds the promise of flawless telepresence-style communication for all human receptors'
We elaborate on how the emerging semantic communications and Artificial Intelligence (AI)/Machine Learning (ML) paradigms may satisfy the requirements of IoS use cases.
arXiv Detail & Related papers (2022-12-21T03:37:38Z) - Edge-Cloud Polarization and Collaboration: A Comprehensive Survey [61.05059817550049]
We conduct a systematic review for both cloud and edge AI.
We are the first to set up the collaborative learning mechanism for cloud and edge modeling.
We discuss potentials and practical experiences of some on-going advanced edge AI topics.
arXiv Detail & Related papers (2021-11-11T05:58:23Z) - How to Reach Real-Time AI on Consumer Devices? Solutions for
Programmable and Custom Architectures [7.085772863979686]
Deep neural networks (DNNs) have led to large strides in various Artificial Intelligence (AI) inference tasks, such as object and speech recognition.
deploying such AI models across commodity devices faces significant challenges.
We present techniques for achieving real-time performance following a cross-stack approach.
arXiv Detail & Related papers (2021-06-21T11:23:12Z) - Pervasive AI for IoT Applications: Resource-efficient Distributed
Artificial Intelligence [45.076180487387575]
Artificial intelligence (AI) has witnessed a substantial breakthrough in a variety of Internet of Things (IoT) applications and services.
This is driven by the easier access to sensory data and the enormous scale of pervasive/ubiquitous devices that generate zettabytes (ZB) of real-time data streams.
The confluence of pervasive computing and artificial intelligence, Pervasive AI, expanded the role of ubiquitous IoT systems.
arXiv Detail & Related papers (2021-05-04T23:42:06Z) - Towards AIOps in Edge Computing Environments [60.27785717687999]
This paper describes the system design of an AIOps platform which is applicable in heterogeneous, distributed environments.
It is feasible to collect metrics with a high frequency and simultaneously run specific anomaly detection algorithms directly on edge devices.
arXiv Detail & Related papers (2021-02-12T09:33:00Z) - Communication-Efficient Edge AI: Algorithms and Systems [39.28788394839187]
Wide scale deployment of edge devices (e.g., IoT devices) generates an unprecedented scale of data.
Such enormous data cannot all be sent from end devices to the cloud for processing.
By pushing inference and training processes of AI models to edge nodes, edge AI has emerged as a promising alternative.
arXiv Detail & Related papers (2020-02-22T09:27:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.