The Internet of Senses: Building on Semantic Communications and Edge
Intelligence
- URL: http://arxiv.org/abs/2212.10748v1
- Date: Wed, 21 Dec 2022 03:37:38 GMT
- Title: The Internet of Senses: Building on Semantic Communications and Edge
Intelligence
- Authors: Roghayeh Joda, Medhat Elsayed, Hatem Abou-zeid, Ramy Atawia, Akram Bin
Sediq, Gary Boudreau, Melike Erol-Kantarci, Lajos Hanzo
- Abstract summary: The Internet of Senses (IoS) holds the promise of flawless telepresence-style communication for all human receptors'
We elaborate on how the emerging semantic communications and Artificial Intelligence (AI)/Machine Learning (ML) paradigms may satisfy the requirements of IoS use cases.
- Score: 67.75406096878321
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Internet of Senses (IoS) holds the promise of flawless telepresence-style
communication for all human `receptors' and therefore blurs the difference of
virtual and real environments. We commence by highlighting the compelling use
cases empowered by the IoS and also the key network requirements. We then
elaborate on how the emerging semantic communications and Artificial
Intelligence (AI)/Machine Learning (ML) paradigms along with 6G technologies
may satisfy the requirements of IoS use cases. On one hand, semantic
communications can be applied for extracting meaningful and significant
information and hence efficiently exploit the resources and for harnessing a
priori information at the receiver to satisfy IoS requirements. On the other
hand, AI/ML facilitates frugal network resource management by making use of the
enormous amount of data generated in IoS edge nodes and devices, as well as by
optimizing the IoS performance via intelligent agents. However, the intelligent
agents deployed at the edge are not completely aware of each others' decisions
and the environments of each other, hence they operate in a partially rather
than fully observable environment. Therefore, we present a case study of
Partially Observable Markov Decision Processes (POMDP) for improving the User
Equipment (UE) throughput and energy consumption, as they are imperative for
IoS use cases, using Reinforcement Learning for astutely activating and
deactivating the component carriers in carrier aggregation. Finally, we outline
the challenges and open issues of IoS implementations and employing semantic
communications, edge intelligence as well as learning under partial
observability in the IoS context.
Related papers
- Leveraging Foundation Models for Zero-Shot IoT Sensing [5.319176383069102]
Deep learning models are increasingly deployed on edge Internet of Things (IoT) devices.
ZSL aims to classify data of unseen classes with the help of semantic information.
In this work, we align the IoT data embeddings with the semantic embeddings generated by an FM's text encoder for zero-shot IoT sensing.
arXiv Detail & Related papers (2024-07-29T11:16:48Z) - IoT-LM: Large Multisensory Language Models for the Internet of Things [70.74131118309967]
IoT ecosystem provides rich source of real-world modalities such as motion, thermal, geolocation, imaging, depth, sensors, and audio.
Machine learning presents a rich opportunity to automatically process IoT data at scale.
We introduce IoT-LM, an open-source large multisensory language model tailored for the IoT ecosystem.
arXiv Detail & Related papers (2024-07-13T08:20:37Z) - Agent-driven Generative Semantic Communication with Cross-Modality and Prediction [57.335922373309074]
We propose a novel agent-driven generative semantic communication framework based on reinforcement learning.
In this work, we develop an agent-assisted semantic encoder with cross-modality capability, which can track the semantic changes, channel condition, to perform adaptive semantic extraction and sampling.
The effectiveness of the designed models has been verified using the UA-DETRAC dataset, demonstrating the performance gains of the overall A-GSC framework.
arXiv Detail & Related papers (2024-04-10T13:24:27Z) - Towards Artificial General Intelligence (AGI) in the Internet of Things
(IoT): Opportunities and Challenges [55.82853124625841]
Artificial General Intelligence (AGI) possesses the capacity to comprehend, learn, and execute tasks with human cognitive abilities.
This research embarks on an exploration of the opportunities and challenges towards achieving AGI in the context of the Internet of Things.
The application spectrum for AGI-infused IoT is broad, encompassing domains ranging from smart grids, residential environments, manufacturing, and transportation to environmental monitoring, agriculture, healthcare, and education.
arXiv Detail & Related papers (2023-09-14T05:43:36Z) - Task-Oriented Integrated Sensing, Computation and Communication for
Wireless Edge AI [46.61358701676358]
Edge artificial intelligence (AI) has been proposed to provide high-performance computation of a conventional cloud down to the network edge.
Recently, convergence of wireless sensing, computation and communication (SC$2$) for specific edge AI tasks, has aroused paradigm shift.
It is paramount importance to advance fully integrated sensing, computation and communication (I SCC) to achieve ultra-reliable and low-latency edge intelligence acquisition.
arXiv Detail & Related papers (2023-06-11T06:40:51Z) - AI-Empowered Data Offloading in MEC-Enabled IoV Networks [40.75165195026413]
This article surveys research studies that use AI as part of the data offloading process, categorized based on four main issues: reliability, security, energy management, and service seller profit.
Various challenges to the process of offloading data in a MEC-enabled IoV network have emerged, such as offloading reliability in highly mobile environments, security for users within the same network, and energy management to keep users from being disincentivized to participate in the network.
arXiv Detail & Related papers (2022-03-31T09:31:53Z) - SMASH: a Semantic-enabled Multi-agent Approach for Self-adaptation of
Human-centered IoT [0.8602553195689512]
This paper presents SMASH: a multi-agent approach for self-adaptation of IoT applications in human-centered environments.
SMASH agents are provided with a 4-layer architecture based on the BDI agent model that integrates human values with goal-reasoning, planning, and acting.
arXiv Detail & Related papers (2021-05-31T12:33:27Z) - Pervasive AI for IoT Applications: Resource-efficient Distributed
Artificial Intelligence [45.076180487387575]
Artificial intelligence (AI) has witnessed a substantial breakthrough in a variety of Internet of Things (IoT) applications and services.
This is driven by the easier access to sensory data and the enormous scale of pervasive/ubiquitous devices that generate zettabytes (ZB) of real-time data streams.
The confluence of pervasive computing and artificial intelligence, Pervasive AI, expanded the role of ubiquitous IoT systems.
arXiv Detail & Related papers (2021-05-04T23:42:06Z) - Autonomous Maintenance in IoT Networks via AoI-driven Deep Reinforcement
Learning [73.85267769520715]
Internet of Things (IoT) with its growing number of deployed devices and applications raises significant challenges for network maintenance procedures.
We formulate a problem of autonomous maintenance in IoT networks as a Partially Observable Markov Decision Process.
We utilize Deep Reinforcement Learning algorithms (DRL) to train agents that decide if a maintenance procedure is in order or not and, in the former case, the proper type of maintenance needed.
arXiv Detail & Related papers (2020-12-31T11:19:51Z) - Machine learning and data analytics for the IoT [8.39035688352917]
We review how IoT-generated data are processed for machine learning analysis.
We propose a framework to enable IoT applications to adaptively learn from other IoT applications.
arXiv Detail & Related papers (2020-06-30T07:38:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.