Towards Accurate Subgraph Similarity Computation via Neural Graph
Pruning
- URL: http://arxiv.org/abs/2210.10643v1
- Date: Wed, 19 Oct 2022 15:16:28 GMT
- Title: Towards Accurate Subgraph Similarity Computation via Neural Graph
Pruning
- Authors: Linfeng Liu, Xu Han, Dawei Zhou, Li-Ping Liu
- Abstract summary: In this work, we convert graph pruning to a problem of node relabeling and then relax it to a differentiable problem.
Based on this idea, we further design a novel neural network to approximate a type of subgraph distance: the subgraph edit distance (SED)
In the design of the model, we propose an attention mechanism to leverage the information about the query graph and guide the pruning of the target graph.
- Score: 22.307526272085024
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Subgraph similarity search, one of the core problems in graph search,
concerns whether a target graph approximately contains a query graph. The
problem is recently touched by neural methods. However, current neural methods
do not consider pruning the target graph, though pruning is critically
important in traditional calculations of subgraph similarities. One obstacle to
applying pruning in neural methods is {the discrete property of pruning}. In
this work, we convert graph pruning to a problem of node relabeling and then
relax it to a differentiable problem. Based on this idea, we further design a
novel neural network to approximate a type of subgraph distance: the subgraph
edit distance (SED). {In particular, we construct the pruning component using a
neural structure, and the entire model can be optimized end-to-end.} In the
design of the model, we propose an attention mechanism to leverage the
information about the query graph and guide the pruning of the target graph.
Moreover, we develop a multi-head pruning strategy such that the model can
better explore multiple ways of pruning the target graph. The proposed model
establishes new state-of-the-art results across seven benchmark datasets.
Extensive analysis of the model indicates that the proposed model can
reasonably prune the target graph for SED computation. The implementation of
our algorithm is released at our Github repo:
https://github.com/tufts-ml/Prune4SED.
Related papers
- Deep Generative Models for Subgraph Prediction [10.56335881963895]
This paper introduces subgraph queries as a new task for deep graph learning.
Subgraph queries jointly predict the components of a target subgraph based on evidence that is represented by an observed subgraph.
We utilize a probabilistic deep Graph Generative Model to answer subgraph queries.
arXiv Detail & Related papers (2024-08-07T19:24:02Z) - Deep Manifold Graph Auto-Encoder for Attributed Graph Embedding [51.75091298017941]
This paper proposes a novel Deep Manifold (Variational) Graph Auto-Encoder (DMVGAE/DMGAE) for attributed graph data.
The proposed method surpasses state-of-the-art baseline algorithms by a significant margin on different downstream tasks across popular datasets.
arXiv Detail & Related papers (2024-01-12T17:57:07Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - Rethinking Explaining Graph Neural Networks via Non-parametric Subgraph
Matching [68.35685422301613]
We propose a novel non-parametric subgraph matching framework, dubbed MatchExplainer, to explore explanatory subgraphs.
It couples the target graph with other counterpart instances and identifies the most crucial joint substructure by minimizing the node corresponding-based distance.
Experiments on synthetic and real-world datasets show the effectiveness of our MatchExplainer by outperforming all state-of-the-art parametric baselines with significant margins.
arXiv Detail & Related papers (2023-01-07T05:14:45Z) - Node Copying: A Random Graph Model for Effective Graph Sampling [35.957719744856696]
We introduce the node copying model for constructing a distribution over graphs.
We show the usefulness of the copying model in three tasks.
We employ our proposed model to mitigate the effect of adversarial attacks on the graph topology.
arXiv Detail & Related papers (2022-08-04T04:04:49Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
Graph neural networks (GNNs) have been shown powerful capacity at modeling structural data.
We present a novel Graph Matching based GNN Pre-Training framework, called GMPT.
The proposed method can be applied to fully self-supervised pre-training and coarse-grained supervised pre-training.
arXiv Detail & Related papers (2022-03-03T09:53:53Z) - Line Graph Neural Networks for Link Prediction [71.00689542259052]
We consider the graph link prediction task, which is a classic graph analytical problem with many real-world applications.
In this formalism, a link prediction problem is converted to a graph classification task.
We propose to seek a radically different and novel path by making use of the line graphs in graph theory.
In particular, each node in a line graph corresponds to a unique edge in the original graph. Therefore, link prediction problems in the original graph can be equivalently solved as a node classification problem in its corresponding line graph, instead of a graph classification task.
arXiv Detail & Related papers (2020-10-20T05:54:31Z) - Non-Parametric Graph Learning for Bayesian Graph Neural Networks [35.88239188555398]
We propose a novel non-parametric graph model for constructing the posterior distribution of graph adjacency matrices.
We demonstrate the advantages of this model in three different problem settings: node classification, link prediction and recommendation.
arXiv Detail & Related papers (2020-06-23T21:10:55Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
We propose a novel graph pooling strategy that leverages node proximity to improve the hierarchical representation learning of graph data with their multi-hop topology.
Results show that the proposed graph pooling strategy is able to achieve state-of-the-art performance on a collection of public graph classification benchmark datasets.
arXiv Detail & Related papers (2020-06-19T13:09:44Z) - Graph Partitioning and Graph Neural Network based Hierarchical Graph
Matching for Graph Similarity Computation [5.710312846460821]
Graph similarity aims to predict a similarity score between one pair of graphs to facilitate downstream applications.
We propose a graph partitioning and graph neural network-based model, called PSimGNN, to effectively resolve this issue.
PSimGNN outperforms state-of-the-art methods in graph similarity computation tasks using approximate Graph Edit Distance (GED) as the graph similarity metric.
arXiv Detail & Related papers (2020-05-16T15:01:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.