Non-Parametric Graph Learning for Bayesian Graph Neural Networks
- URL: http://arxiv.org/abs/2006.13335v1
- Date: Tue, 23 Jun 2020 21:10:55 GMT
- Title: Non-Parametric Graph Learning for Bayesian Graph Neural Networks
- Authors: Soumyasundar Pal, Saber Malekmohammadi, Florence Regol, Yingxue Zhang,
Yishi Xu, Mark Coates
- Abstract summary: We propose a novel non-parametric graph model for constructing the posterior distribution of graph adjacency matrices.
We demonstrate the advantages of this model in three different problem settings: node classification, link prediction and recommendation.
- Score: 35.88239188555398
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graphs are ubiquitous in modelling relational structures. Recent endeavours
in machine learning for graph-structured data have led to many architectures
and learning algorithms. However, the graph used by these algorithms is often
constructed based on inaccurate modelling assumptions and/or noisy data. As a
result, it fails to represent the true relationships between nodes. A Bayesian
framework which targets posterior inference of the graph by considering it as a
random quantity can be beneficial. In this paper, we propose a novel
non-parametric graph model for constructing the posterior distribution of graph
adjacency matrices. The proposed model is flexible in the sense that it can
effectively take into account the output of graph-based learning algorithms
that target specific tasks. In addition, model inference scales well to large
graphs. We demonstrate the advantages of this model in three different problem
settings: node classification, link prediction and recommendation.
Related papers
- GraphGLOW: Universal and Generalizable Structure Learning for Graph
Neural Networks [72.01829954658889]
This paper introduces the mathematical definition of this novel problem setting.
We devise a general framework that coordinates a single graph-shared structure learner and multiple graph-specific GNNs.
The well-trained structure learner can directly produce adaptive structures for unseen target graphs without any fine-tuning.
arXiv Detail & Related papers (2023-06-20T03:33:22Z) - Towards Accurate Subgraph Similarity Computation via Neural Graph
Pruning [22.307526272085024]
In this work, we convert graph pruning to a problem of node relabeling and then relax it to a differentiable problem.
Based on this idea, we further design a novel neural network to approximate a type of subgraph distance: the subgraph edit distance (SED)
In the design of the model, we propose an attention mechanism to leverage the information about the query graph and guide the pruning of the target graph.
arXiv Detail & Related papers (2022-10-19T15:16:28Z) - Node Copying: A Random Graph Model for Effective Graph Sampling [35.957719744856696]
We introduce the node copying model for constructing a distribution over graphs.
We show the usefulness of the copying model in three tasks.
We employ our proposed model to mitigate the effect of adversarial attacks on the graph topology.
arXiv Detail & Related papers (2022-08-04T04:04:49Z) - Explanation Graph Generation via Pre-trained Language Models: An
Empirical Study with Contrastive Learning [84.35102534158621]
We study pre-trained language models that generate explanation graphs in an end-to-end manner.
We propose simple yet effective ways of graph perturbations via node and edge edit operations.
Our methods lead to significant improvements in both structural and semantic accuracy of explanation graphs.
arXiv Detail & Related papers (2022-04-11T00:58:27Z) - Neighborhood Random Walk Graph Sampling for Regularized Bayesian Graph
Convolutional Neural Networks [0.6236890292833384]
In this paper, we propose a novel algorithm called Bayesian Graph Convolutional Network using Neighborhood Random Walk Sampling (BGCN-NRWS)
BGCN-NRWS uses a Markov Chain Monte Carlo (MCMC) based graph sampling algorithm utilizing graph structure, reduces overfitting by using a variational inference layer, and yields consistently competitive classification results compared to the state-of-the-art in semi-supervised node classification.
arXiv Detail & Related papers (2021-12-14T20:58:27Z) - Learning to Learn Graph Topologies [27.782971146122218]
We learn a mapping from node data to the graph structure based on the idea of learning to optimise (L2O)
The model is trained in an end-to-end fashion with pairs of node data and graph samples.
Experiments on both synthetic and real-world data demonstrate that our model is more efficient than classic iterative algorithms in learning a graph with specific topological properties.
arXiv Detail & Related papers (2021-10-19T08:42:38Z) - Learning Graphon Autoencoders for Generative Graph Modeling [91.32624399902755]
Graphon is a nonparametric model that generates graphs with arbitrary sizes and can be induced from graphs easily.
We propose a novel framework called textitgraphon autoencoder to build an interpretable and scalable graph generative model.
A linear graphon factorization model works as a decoder, leveraging the latent representations to reconstruct the induced graphons.
arXiv Detail & Related papers (2021-05-29T08:11:40Z) - Generating a Doppelganger Graph: Resembling but Distinct [5.618335078130568]
We propose an approach to generating a doppelganger graph that resembles a given one in many graph properties.
The approach is an orchestration of graph representation learning, generative adversarial networks, and graph realization algorithms.
arXiv Detail & Related papers (2021-01-23T22:08:27Z) - Line Graph Neural Networks for Link Prediction [71.00689542259052]
We consider the graph link prediction task, which is a classic graph analytical problem with many real-world applications.
In this formalism, a link prediction problem is converted to a graph classification task.
We propose to seek a radically different and novel path by making use of the line graphs in graph theory.
In particular, each node in a line graph corresponds to a unique edge in the original graph. Therefore, link prediction problems in the original graph can be equivalently solved as a node classification problem in its corresponding line graph, instead of a graph classification task.
arXiv Detail & Related papers (2020-10-20T05:54:31Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
We propose a novel graph pooling strategy that leverages node proximity to improve the hierarchical representation learning of graph data with their multi-hop topology.
Results show that the proposed graph pooling strategy is able to achieve state-of-the-art performance on a collection of public graph classification benchmark datasets.
arXiv Detail & Related papers (2020-06-19T13:09:44Z) - Adaptive Graph Auto-Encoder for General Data Clustering [90.8576971748142]
Graph-based clustering plays an important role in the clustering area.
Recent studies about graph convolution neural networks have achieved impressive success on graph type data.
We propose a graph auto-encoder for general data clustering, which constructs the graph adaptively according to the generative perspective of graphs.
arXiv Detail & Related papers (2020-02-20T10:11:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.