論文の概要: Deep Multi-Representation Model for Click-Through Rate Prediction
- arxiv url: http://arxiv.org/abs/2210.10664v1
- Date: Tue, 18 Oct 2022 09:37:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-20 13:43:09.150731
- Title: Deep Multi-Representation Model for Click-Through Rate Prediction
- Title(参考訳): クリックスルー率予測のためのディープマルチ表現モデル
- Authors: Shereen Elsayed and Lars Schmidt-Thieme
- Abstract要約: CTR(Click-Through Rate Prediction)は、レコメンデーションシステムにおいて重要なタスクである。
本稿では、2つの強力な特徴表現学習コンポーネントの混合を共同で訓練するDeep Multi-Representation Model(DeepMR)を提案する。
3つの実世界のデータセットの実験により、提案モデルがクリックスルー率予測のタスクにおいて、すべての最先端モデルを著しく上回っていることが示された。
- 参考スコア(独自算出の注目度): 6.155158115218501
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Click-Through Rate prediction (CTR) is a crucial task in recommender systems,
and it gained considerable attention in the past few years. The primary purpose
of recent research emphasizes obtaining meaningful and powerful representations
through mining low and high feature interactions using various components such
as Deep Neural Networks (DNN), CrossNets, or transformer blocks. In this work,
we propose the Deep Multi-Representation model (DeepMR) that jointly trains a
mixture of two powerful feature representation learning components, namely DNNs
and multi-head self-attentions. Furthermore, DeepMR integrates the novel
residual with zero initialization (ReZero) connections to the DNN and the
multi-head self-attention components for learning superior input
representations. Experiments on three real-world datasets show that the
proposed model significantly outperforms all state-of-the-art models in the
task of click-through rate prediction.
- Abstract(参考訳): クリックスルー率予測(ctr)はレコメンダシステムにおいて重要なタスクであり、過去数年間でかなりの注目を集めた。
最近の研究の主な目的は、ディープニューラルネットワーク(dnn)、クロスネット、トランスフォーマーブロックなど、さまざまなコンポーネントを使用して低機能および高機能インタラクションをマイニングすることで、有意義で強力な表現を得ることである。
本研究では,DNNとマルチヘッド自己注意という2つの強力な特徴表現学習コンポーネントを併用して学習するDeep Multi-Representation Model(DeepMR)を提案する。
さらにdeepmrは、新しい残差をdnnへのゼロ初期化(rezero)接続と、優れた入力表現を学習するためのマルチヘッド・セルフアテンションコンポーネントと統合する。
3つの実世界のデータセットの実験により、提案モデルがクリックスルー率予測のタスクにおいて、すべての最先端モデルを著しく上回っていることが示された。
関連論文リスト
- PVAFN: Point-Voxel Attention Fusion Network with Multi-Pooling Enhancing for 3D Object Detection [59.355022416218624]
点とボクセルの表現の統合は、LiDARベースの3Dオブジェクト検出においてより一般的になりつつある。
PVAFN(Point-Voxel Attention Fusion Network)と呼ばれる新しい2段3次元物体検出器を提案する。
PVAFNはマルチプール戦略を使用して、マルチスケールとリージョン固有の情報を効果的に統合する。
論文 参考訳(メタデータ) (2024-08-26T19:43:01Z) - DCNN: Dual Cross-current Neural Networks Realized Using An Interactive Deep Learning Discriminator for Fine-grained Objects [48.65846477275723]
本研究では、微細な画像分類の精度を向上させるために、新しい二重電流ニューラルネットワーク(DCNN)を提案する。
弱い教師付き学習バックボーンモデルを構築するための新しい特徴として、(a)異種データの抽出、(b)特徴マップの解像度の維持、(c)受容領域の拡大、(d)グローバル表現と局所特徴の融合などがある。
論文 参考訳(メタデータ) (2024-05-07T07:51:28Z) - Multilinear Operator Networks [60.7432588386185]
ポリノミアルネットワーク(Polynomial Networks)は、アクティベーション関数を必要としないモデルのクラスである。
マルチリニア演算子のみに依存するMONetを提案する。
論文 参考訳(メタデータ) (2024-01-31T16:52:19Z) - SENetV2: Aggregated dense layer for channelwise and global
representations [0.0]
我々は,Squeeze残余モジュール内に,多分岐密度層である新しい多層パーセプトロンを導入する。
この融合により、チャネルワイドパターンを捕捉し、グローバルな知識を持つネットワークの能力が向上する。
ベンチマークデータセットの広範な実験を行い、モデルを検証し、確立したアーキテクチャと比較する。
論文 参考訳(メタデータ) (2023-11-17T14:10:57Z) - Point-aware Interaction and CNN-induced Refinement Network for RGB-D
Salient Object Detection [95.84616822805664]
我々は,CNNによるトランスフォーマーアーキテクチャを導入し,ポイント・アウェア・インタラクションとCNNによるリファインメントを備えた新しいRGB-D SODネットワークを提案する。
トランスフォーマーがもたらすブロック効果とディテール破壊問題を自然に軽減するために,コンテンツリファインメントとサプリメントのためのCNNRユニットを設計する。
論文 参考訳(メタデータ) (2023-08-17T11:57:49Z) - General-Purpose Multimodal Transformer meets Remote Sensing Semantic
Segmentation [35.100738362291416]
マルチモーダルAIは、特にセマンティックセグメンテーションのような複雑なタスクのために、補完的なデータソースを活用する。
汎用マルチモーダルネットワークの最近のトレンドは、最先端の性能を達成する大きな可能性を示している。
本稿では,3次元畳み込みを利用して重要なローカル情報をエンコードし,同時にモーダルな特徴を学習するUNet型モジュールを提案する。
論文 参考訳(メタデータ) (2023-07-07T04:58:34Z) - AdnFM: An Attentive DenseNet based Factorization Machine for CTR
Prediction [11.958336595818267]
Attentive DenseNet based Factorization Machines (AdnFM) と呼ばれる新しいモデルを提案する。
AdnFMはフィードフォワードニューラルネットワークから隠されたすべての層を暗黙の高次の特徴として使用することにより、より包括的な深い特徴を抽出することができる。
2つの実世界のデータセットにおける実験により、提案モデルがクリックスルーレート予測の性能を効果的に向上できることが示されている。
論文 参考訳(メタデータ) (2020-12-20T01:00:39Z) - PC-RGNN: Point Cloud Completion and Graph Neural Network for 3D Object
Detection [57.49788100647103]
LiDARベースの3Dオブジェクト検出は、自動運転にとって重要なタスクです。
現在のアプローチでは、遠方および閉ざされた物体の偏りと部分的な点雲に苦しむ。
本稿では,この課題を2つの解決法で解決する新しい二段階アプローチ,pc-rgnnを提案する。
論文 参考訳(メタデータ) (2020-12-18T18:06:43Z) - Learning Deep Interleaved Networks with Asymmetric Co-Attention for
Image Restoration [65.11022516031463]
本稿では,高品質(本社)画像再構成のために,異なる状態の情報をどのように組み合わせるべきかを学習するディープインターリーブドネットワーク(DIN)を提案する。
本稿では,各インターリーブノードにアタッチメントされた非対称なコアテンション(AsyCA)を提案し,その特性依存性をモデル化する。
提案したDINはエンドツーエンドで訓練でき、様々な画像復元タスクに適用できる。
論文 参考訳(メタデータ) (2020-10-29T15:32:00Z) - GateNet: Gating-Enhanced Deep Network for Click-Through Rate Prediction [3.201333208812837]
近年、多くのニューラルネットワークベースのCTRモデルが提案され、成功している。
本稿では,GateNetと呼ばれる新しいモデルを提案する。このモデルでは,埋込層に特徴埋込ゲートまたは隠蔽ゲートを導入するか,あるいは隠蔽CTRモデルを導入する。
論文 参考訳(メタデータ) (2020-07-06T12:45:46Z) - Feature Interaction based Neural Network for Click-Through Rate
Prediction [5.095988654970358]
本稿では,3次元関係テンソルを用いて特徴相互作用をモデル化可能な特徴相互作用ベースニューラルネットワーク(FINN)を提案する。
我々のディープFINNモデルは、PNNやDeepFMのような最先端のディープモデルよりも優れていることを示す。
また、我々のモデルは、機能相互作用を効果的に学習し、実世界のデータセットでより良いパフォーマンスを達成することができることを示している。
論文 参考訳(メタデータ) (2020-06-07T03:53:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。