論文の概要: Topology Optimization via Machine Learning and Deep Learning: A Review
- arxiv url: http://arxiv.org/abs/2210.10782v2
- Date: Mon, 5 Jun 2023 15:01:43 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-07 04:25:11.739688
- Title: Topology Optimization via Machine Learning and Deep Learning: A Review
- Title(参考訳): 機械学習とディープラーニングによるトポロジー最適化: レビュー
- Authors: Seungyeon Shin, Dongju Shin, Namwoo Kang
- Abstract要約: トポロジー最適化 (TO) は、設計領域内の与えられた負荷条件と境界条件を満たす最適設計を導出する手法である。
本研究は機械学習に基づくTO(MLTO)に関する過去の研究をレビューし分析する。
- 参考スコア(独自算出の注目度): 4.447467536572626
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Topology optimization (TO) is a method of deriving an optimal design that
satisfies a given load and boundary conditions within a design domain. This
method enables effective design without initial design, but has been limited in
use due to high computational costs. At the same time, machine learning (ML)
methodology including deep learning has made great progress in the 21st
century, and accordingly, many studies have been conducted to enable effective
and rapid optimization by applying ML to TO. Therefore, this study reviews and
analyzes previous research on ML-based TO (MLTO). Two different perspectives of
MLTO are used to review studies: (1) TO and (2) ML perspectives. The TO
perspective addresses "why" to use ML for TO, while the ML perspective
addresses "how" to apply ML to TO. In addition, the limitations of current MLTO
research and future research directions are examined.
- Abstract(参考訳): トポロジー最適化(TO)は、設計領域内の与えられた負荷と境界条件を満たす最適な設計を導出する手法である。
この方法は初期設計なしで効果的な設計を可能にするが、計算コストが高いため使用が制限されている。
同時に、ディープラーニングを含む機械学習(ML)手法は21世紀に大きく進歩し、TOにMLを適用することで効果的かつ迅速な最適化を実現するために多くの研究がなされている。
そこで本研究では,MLベースのTO(MLTO)に関する過去の研究をレビューし,分析する。
MLTOの2つの異なる視点は、(1)TOと(2)MLの視点をレビューするために使用される。
TOパースペクティブは、なぜToのためにMLを使用するのか、MLパースペクティブは、TOにMLを適用するための"ハウ"に対処する。
また,現在のMLTO研究の限界と今後の研究方向性についても検討した。
関連論文リスト
- Common pitfalls to avoid while using multiobjective optimization in machine learning [1.2499537119440245]
機械学習(ML)における多目的最適化(MOO)の適用の探求への関心が高まっている。
その可能性にもかかわらず、MOOを使いたいML実践者のエントリーレベルガイドとして機能する十分な文献が不足している。
従来の研究、特に深層学習におけるMOO(物理情報ニューラルネットワーク(PINN)を手がかりに)に関する研究を批判的にレビューし、MLにおけるMOOの原則をよりよく把握する必要性を強調した誤解を特定する。
論文 参考訳(メタデータ) (2024-05-02T17:12:25Z) - Towards Optimal Learning of Language Models [124.65669486710992]
言語モデル(LM)の最適学習の理論を提案する。
我々は、最適学習過程における力学の性質を明らかにするために、学習法則という定理を導出した。
我々は、LMの最適学習が、LMのスケーリング法則における係数の改善に起因することを実証的に検証した。
論文 参考訳(メタデータ) (2024-02-27T18:52:19Z) - Learning to optimize by multi-gradient for multi-objective optimization [0.0]
我々はMOO問題を最適化するための新しい自動学習パラダイムを導入し、ML2O法を提案する。
学習に基づく手法として、ML2Oは現在のステップからの情報を活用することで、地域景観の知識を取得する。
我々の学習は、マルチタスク学習(MTL)ニューラルネットワークのトレーニングにおいて、手作りの競争相手よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-11-01T14:55:54Z) - Symbolic Learning to Optimize: Towards Interpretability and Scalability [113.23813868412954]
近年のL2O(Learning to Optimize)研究は,複雑なタスクに対する最適化手順の自動化と高速化に期待できる道のりを示唆している。
既存のL2Oモデルは、ニューラルネットワークによる最適化ルールをパラメータ化し、メタトレーニングを通じてそれらの数値ルールを学ぶ。
本稿では,L2Oの総合的な記号表現と解析の枠組みを確立する。
そこで本稿では,大規模問題にメタトレーニングを施す軽量なL2Oモデルを提案する。
論文 参考訳(メタデータ) (2022-03-13T06:04:25Z) - MAML is a Noisy Contrastive Learner [72.04430033118426]
モデルに依存しないメタラーニング(MAML)は、今日では最も人気があり広く採用されているメタラーニングアルゴリズムの1つである。
我々は、MAMLの動作メカニズムに対する新たな視点を提供し、以下に示すように、MAMLは、教師付きコントラスト目的関数を用いたメタラーナーに類似している。
このような干渉を軽減するため, 単純だが効果的な手法であるゼロ化手法を提案する。
論文 参考訳(メタデータ) (2021-06-29T12:52:26Z) - Practical Machine Learning Safety: A Survey and Primer [81.73857913779534]
自動運転車のような安全クリティカルなアプリケーションにおける機械学習アルゴリズムのオープンワールド展開は、さまざまなML脆弱性に対処する必要がある。
一般化エラーを低減し、ドメイン適応を実現し、外乱例や敵攻撃を検出するための新しいモデルと訓練技術。
我々の組織は、MLアルゴリズムの信頼性を異なる側面から向上するために、最先端のML技術を安全戦略にマッピングする。
論文 参考訳(メタデータ) (2021-06-09T05:56:42Z) - Learning by Design: Structuring and Documenting the Human Choices in
Machine Learning Development [6.903929927172917]
本稿では,機械学習モデル作成における熟考と規範的選択を概説する8つの設計質問からなる手法を提案する。
本手法は,方法論的透明性を通じた批判的評価を支援するなど,いくつかの利点がある。
本手法は,MLモデルの開発において,ML実践者が選択や仮定を構造化し,正当化する上で有効であると考えている。
論文 参考訳(メタデータ) (2021-05-03T08:47:45Z) - Learning to Optimize: A Primer and A Benchmark [94.29436694770953]
最適化への学習(L2O)は、機械学習を活用して最適化方法を開発する新しいアプローチです。
この記事では、継続的最適化のためのL2Oの総合的な調査とベンチマークを行う。
論文 参考訳(メタデータ) (2021-03-23T20:46:20Z) - Stress Testing of Meta-learning Approaches for Few-shot Learning [2.733700237741334]
メタラーニング(ML)は、マルチショット学習などのリソース制約下で有望な学習方法として登場しました。
タスク複雑性の増大に対して,数ショット学習のためのMLアプローチの性能を測定した。
論文 参考訳(メタデータ) (2021-01-21T13:00:10Z) - A Survey on Large-scale Machine Learning [67.6997613600942]
機械学習はデータに対する深い洞察を与え、マシンが高品質な予測を行うことを可能にする。
ほとんどの高度な機械学習アプローチは、大規模なデータを扱う場合の膨大な時間コストに悩まされる。
大規模機械学習は、ビッグデータからパターンを、同等のパフォーマンスで効率的に学習することを目的としている。
論文 参考訳(メタデータ) (2020-08-10T06:07:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。