論文の概要: Palm up: Playing in the Latent Manifold for Unsupervised Pretraining
- arxiv url: http://arxiv.org/abs/2210.10913v1
- Date: Wed, 19 Oct 2022 22:26:12 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-21 13:48:58.870473
- Title: Palm up: Playing in the Latent Manifold for Unsupervised Pretraining
- Title(参考訳): パームアップ:教師なしプレトレーニングのための後期マニフォールドで遊ぶ
- Authors: Hao Liu, Tom Zahavy, Volodymyr Mnih, Satinder Singh
- Abstract要約: 本稿では,多種多様なデータセットを使用しながら探索行動を示すアルゴリズムを提案する。
私たちのキーとなるアイデアは、静的データセットに事前トレーニングされた深層生成モデルを活用し、潜在空間に動的モデルを導入することです。
次に、教師なし強化学習アルゴリズムを用いて、この環境を探索し、収集したデータに基づいて教師なし表現学習を行う。
- 参考スコア(独自算出の注目度): 31.92145741769497
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large and diverse datasets have been the cornerstones of many impressive
advancements in artificial intelligence. Intelligent creatures, however, learn
by interacting with the environment, which changes the input sensory signals
and the state of the environment. In this work, we aim to bring the best of
both worlds and propose an algorithm that exhibits an exploratory behavior
whilst it utilizes large diverse datasets. Our key idea is to leverage deep
generative models that are pretrained on static datasets and introduce a
dynamic model in the latent space. The transition dynamics simply mixes an
action and a random sampled latent. It then applies an exponential moving
average for temporal persistency, the resulting latent is decoded to image
using pretrained generator. We then employ an unsupervised reinforcement
learning algorithm to explore in this environment and perform unsupervised
representation learning on the collected data. We further leverage the temporal
information of this data to pair data points as a natural supervision for
representation learning. Our experiments suggest that the learned
representations can be successfully transferred to downstream tasks in both
vision and reinforcement learning domains.
- Abstract(参考訳): 大規模で多様なデータセットが、人工知能の多くの印象的な進歩の基盤となっている。
しかし、知的な生物は、入力された感覚信号と環境の状態を変える環境と相互作用することで学習する。
本研究では,両世界の最善を尽くし,多種多様なデータセットを活用しながら探索行動を示すアルゴリズムを提案する。
私たちのキーとなるアイデアは、静的データセットに事前トレーニングされた深層生成モデルを活用し、潜在空間に動的モデルを導入することです。
遷移ダイナミクスは、単に作用とランダムにサンプリングされた潜在性とを混合する。
その後、時間的持続性に対して指数的な移動平均を適用し、得られた潜水剤は事前訓練されたジェネレータを使用して画像に復号される。
次に,教師なし強化学習アルゴリズムを用いてこの環境を探索し,収集したデータに対して教師なし表現学習を行う。
さらに,このデータの時間情報を利用して,表現学習の自然な監督としてデータポイントをペアリングする。
実験の結果,視覚領域と強化学習領域の両方において,学習表現を下流タスクにうまく移行できることが示唆された。
関連論文リスト
- Reinforcement Learning Based Multi-modal Feature Fusion Network for
Novel Class Discovery [47.28191501836041]
本稿では,人間の認知過程をシミュレートするために強化学習フレームワークを用いる。
また,マルチモーダル情報から特徴を抽出・融合するマルチエージェントフレームワークをデプロイした。
我々は、OS-MN40、OS-MN40-Miss、Cifar10データセットを用いて、3Dドメインと2Dドメインの両方でのアプローチの性能を示す。
論文 参考訳(メタデータ) (2023-08-26T07:55:32Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
認知のための行動認識型身体学習(ALP)について紹介する。
ALPは、強化学習ポリシーと逆ダイナミクス予測目標を最適化することにより、行動情報を表現学習に組み込む。
ALPは、複数の下流認識タスクにおいて、既存のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-16T21:51:04Z) - Reinforcement Learning from Passive Data via Latent Intentions [86.4969514480008]
我々は、下流RLを加速する機能を学ぶために、受動的データが引き続き使用できることを示す。
我々のアプローチは、意図をモデル化することで受動的データから学習する。
実験では、クロス・エボディメント・ビデオデータやYouTubeビデオなど、さまざまな形式の受動的データから学習できることを実証した。
論文 参考訳(メタデータ) (2023-04-10T17:59:05Z) - Self-supervised Sequential Information Bottleneck for Robust Exploration
in Deep Reinforcement Learning [28.75574762244266]
本研究では、圧縮された時間的コヒーレントな表現を学習するためのシーケンシャルな情報ボトルネックの目標について紹介する。
ノイズの多い環境での効率的な探索のために,タスク関連状態の新規性を捉える本質的な報奨を更に構築する。
論文 参考訳(メタデータ) (2022-09-12T15:41:10Z) - Stochastic Coherence Over Attention Trajectory For Continuous Learning
In Video Streams [64.82800502603138]
本稿では,映像ストリーム中のピクセルワイズ表現を段階的かつ自律的に開発するための,ニューラルネットワークに基づく新しいアプローチを提案する。
提案手法は, 参加者の入場地を観察することで, エージェントが学習できる, 人間の様の注意機構に基づく。
実験では,3次元仮想環境を利用して,映像ストリームを観察することで,エージェントが物体の識別を学べることを示す。
論文 参考訳(メタデータ) (2022-04-26T09:52:31Z) - Compressed Predictive Information Coding [6.220929746808418]
我々は,動的データから有用な表現を抽出する新しい情報理論フレームワーク,Compressed Predictive Information Coding (CPIC) を開発した。
我々はCPIC損失の変動境界を導出し、最大予測可能な情報を取得するために潜時空間を誘導する。
我々はCPICが低信号対雑音比で雑音力学系の潜時空間を復元できることを実証した。
論文 参考訳(メタデータ) (2022-03-03T22:47:58Z) - Self-supervised Audiovisual Representation Learning for Remote Sensing Data [96.23611272637943]
遠隔センシングにおける深層ニューラルネットワークの事前学習のための自己教師型アプローチを提案する。
ジオタグ付きオーディオ記録とリモートセンシングの対応を利用して、これは完全にラベルなしの方法で行われる。
提案手法は,既存のリモートセンシング画像の事前学習方法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-08-02T07:50:50Z) - Curious Representation Learning for Embodied Intelligence [81.21764276106924]
近年,自己指導型表現学習は顕著な成功を収めている。
しかし、真にインテリジェントなエージェントを構築するためには、環境から学習できる表現学習アルゴリズムを構築する必要がある。
本稿では,強化学習方針と視覚的表現モデルを同時に学習する,好奇心をそそる表現学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-03T17:59:20Z) - Laplacian Denoising Autoencoder [114.21219514831343]
本稿では,新しいタイプの自動符号化器を用いてデータ表現を学習することを提案する。
勾配領域における潜伏クリーンデータを破損させて雑音入力データを生成する。
いくつかのビジュアルベンチマークの実験では、提案されたアプローチでより良い表現が学べることが示されている。
論文 参考訳(メタデータ) (2020-03-30T16:52:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。