論文の概要: DOT-VAE: Disentangling One Factor at a Time
- arxiv url: http://arxiv.org/abs/2210.10920v2
- Date: Fri, 21 Oct 2022 03:30:52 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-24 10:57:43.609366
- Title: DOT-VAE: Disentangling One Factor at a Time
- Title(参考訳): DoOT-VAE: 一度にひとつの要因を解消する
- Authors: Vaishnavi Patil, Matthew Evanusa, Joseph JaJa
- Abstract要約: 本稿では,変分オートエンコーダの潜伏空間を乱交空間で拡張し,Wake-Sleep-inspireed two-step algorithm for unsupervised disentanglementを用いて学習する手法を提案する。
我々のネットワークは、解釈可能な独立した因子を一度に1つのデータから切り離すことを学び、それを非絡み合った潜在空間の異なる次元にエンコードし、因子の数やそれらの共同分布について事前の仮定をしない。
- 参考スコア(独自算出の注目度): 1.6114012813668934
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As we enter the era of machine learning characterized by an overabundance of
data, discovery, organization, and interpretation of the data in an
unsupervised manner becomes a critical need. One promising approach to this
endeavour is the problem of Disentanglement, which aims at learning the
underlying generative latent factors, called the factors of variation, of the
data and encoding them in disjoint latent representations. Recent advances have
made efforts to solve this problem for synthetic datasets generated by a fixed
set of independent factors of variation. Here, we propose to extend this to
real-world datasets with a countable number of factors of variations. We
propose a novel framework which augments the latent space of a Variational
Autoencoders with a disentangled space and is trained using a
Wake-Sleep-inspired two-step algorithm for unsupervised disentanglement. Our
network learns to disentangle interpretable, independent factors from the data
``one at a time", and encode it in different dimensions of the disentangled
latent space, while making no prior assumptions about the number of factors or
their joint distribution. We demonstrate its quantitative and qualitative
effectiveness by evaluating the latent representations learned on two synthetic
benchmark datasets; DSprites and 3DShapes and on a real datasets CelebA.
- Abstract(参考訳): データの過剰さを特徴とする機械学習の時代に入ると、教師なしの方法でデータの発見、組織化、解釈が重要なニーズとなる。
この取り組みに有望なアプローチの1つは、データの変異の要因と呼ばれる根底にある生成的潜在要因を学習し、それらを無関係な潜在表現にエンコードすることを目的とした、絡み合いの問題である。
最近の進歩は、変動の独立要因の固定セットによって生成される合成データセットのこの問題を解決する努力をしてきた。
本稿では,これを実世界のデータセットに拡張し,可算な変動要素を数えることを提案する。
本稿では,変分オートエンコーダの潜伏空間を乱交空間で拡張し,Wake-Sleep-inspireed two-step algorithm for unsupervised disentanglementを用いて学習する手法を提案する。
我々のネットワークは、解釈可能で独立な要因を「一度に1つ」のデータから切り離し、不連続な潜在空間の異なる次元にエンコードすることを学び、その要因の数やそれらの共同分布について事前の仮定を行なわない。
dsprites と 3dshapes と real datasets celeba の2つの合成ベンチマークデータセットで得られた潜在表現を評価し,その定量的・定性的有効性を示す。
関連論文リスト
- Predictive variational autoencoder for learning robust representations
of time-series data [0.0]
本稿では,次点を予測するVAEアーキテクチャを提案する。
VAEの2つの制約は、時間とともにスムーズであることを示し、堅牢な潜伏表現を生成し、合成データセット上の潜伏因子を忠実に回収する。
論文 参考訳(メタデータ) (2023-12-12T02:06:50Z) - ProtoVAE: Prototypical Networks for Unsupervised Disentanglement [1.6114012813668934]
本稿では,自己スーパービジョンを用いて学習した深層学習型プロトタイプネットワークを活用する,新しい深部生成型VAEモデルProtoVAEを提案する。
我々のモデルは、完全に教師なしであり、要素数を含むデータセットの事前知識を必要としない。
提案手法をベンチマークdSprites, 3DShapes, MPI3Dディジアングルメントデータセット上で評価した。
論文 参考訳(メタデータ) (2023-05-16T01:29:26Z) - Towards Causal Representation Learning and Deconfounding from Indefinite
Data [17.793702165499298]
非統計データ(画像、テキストなど)は、従来の因果データとプロパティやメソッドの点で重大な対立に遭遇する。
2つの新しい視点から因果データを再定義し、3つのデータパラダイムを提案する。
非定値データから因果表現を学習するための動的変分推論モデルとして,上記の設計を実装した。
論文 参考訳(メタデータ) (2023-05-04T08:20:37Z) - Leveraging sparse and shared feature activations for disentangled
representation learning [112.22699167017471]
本稿では,教師付きタスクの多種多様な集合から抽出した知識を活用し,共通不整合表現を学習することを提案する。
我々は6つの実世界分布シフトベンチマークと異なるデータモダリティに対するアプローチを検証する。
論文 参考訳(メタデータ) (2023-04-17T01:33:24Z) - Exploring the Trade-off between Plausibility, Change Intensity and
Adversarial Power in Counterfactual Explanations using Multi-objective
Optimization [73.89239820192894]
自動対物生成は、生成した対物インスタンスのいくつかの側面を考慮すべきである。
本稿では, 対実例生成のための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2022-05-20T15:02:53Z) - Leveraging Relational Information for Learning Weakly Disentangled
Representations [11.460692362624533]
絡み合いは神経表現を強制するのは難しい性質である。
我々は、(弱々しい)非絡み合い表現の学習に関する別の見解を示す。
論文 参考訳(メタデータ) (2022-05-20T09:58:51Z) - Equivariance Allows Handling Multiple Nuisance Variables When Analyzing
Pooled Neuroimaging Datasets [53.34152466646884]
本稿では,構造空間上でインスタンス化された同変表現学習における最近の結果と,因果推論における古典的結果の簡易な利用が,いかに効果的に実現されたかを示す。
いくつかの仮定の下で、我々のモデルが複数のニュアンス変数を扱えることを実証し、そうでなければサンプルの大部分を取り除く必要のあるシナリオにおいて、プールされた科学データセットの分析を可能にする。
論文 参考訳(メタデータ) (2022-03-29T04:54:06Z) - Learning Conditional Invariance through Cycle Consistency [60.85059977904014]
本稿では,データセットの変動の有意義な要因と独立な要因を識別する新しい手法を提案する。
提案手法は,対象プロパティと残りの入力情報に対する2つの別個の潜在部分空間を含む。
我々は,より意味のある因子を同定し,よりスペーサーや解釈可能なモデルに導く合成および分子データについて実証する。
論文 参考訳(メタデータ) (2021-11-25T17:33:12Z) - Evidential Sparsification of Multimodal Latent Spaces in Conditional
Variational Autoencoders [63.46738617561255]
訓練された条件付き変分オートエンコーダの離散潜時空間をスパース化する問題を考察する。
顕在的理論を用いて、特定の入力条件から直接証拠を受け取る潜在クラスを特定し、そうでないクラスをフィルタリングする。
画像生成や人間の行動予測などの多様なタスクの実験により,提案手法の有効性を実証した。
論文 参考訳(メタデータ) (2020-10-19T01:27:21Z) - Learning to Manipulate Individual Objects in an Image [71.55005356240761]
本稿では,独立性および局所性を有する潜在因子を用いた生成モデルを学習する手法について述べる。
これは、潜伏変数の摂動が、オブジェクトに対応する合成画像の局所領域のみに影響を与えることを意味する。
他の教師なし生成モデルとは異なり、オブジェクトレベルのアノテーションを必要とせず、オブジェクト中心の操作を可能にする。
論文 参考訳(メタデータ) (2020-04-11T21:50:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。