Hybrid Approach for 3D Head Reconstruction: Using Neural Networks and
Visual Geometry
- URL: http://arxiv.org/abs/2104.13710v1
- Date: Wed, 28 Apr 2021 11:31:35 GMT
- Title: Hybrid Approach for 3D Head Reconstruction: Using Neural Networks and
Visual Geometry
- Authors: Oussema Bouafif, Bogdan Khomutenko, Mohamed Daoudi
- Abstract summary: We present a novel method for reconstructing 3D heads from a single or multiple image(s) using a hybrid approach based on deep learning and geometric techniques.
We propose an encoder-decoder network based on the U-net architecture and trained on synthetic data only.
- Score: 3.970492757288025
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recovering the 3D geometric structure of a face from a single input image is
a challenging active research area in computer vision. In this paper, we
present a novel method for reconstructing 3D heads from a single or multiple
image(s) using a hybrid approach based on deep learning and geometric
techniques. We propose an encoder-decoder network based on the U-net
architecture and trained on synthetic data only. It predicts both pixel-wise
normal vectors and landmarks maps from a single input photo. Landmarks are used
for the pose computation and the initialization of the optimization problem,
which, in turn, reconstructs the 3D head geometry by using a parametric
morphable model and normal vector fields. State-of-the-art results are achieved
through qualitative and quantitative evaluation tests on both single and
multi-view settings. Despite the fact that the model was trained only on
synthetic data, it successfully recovers 3D geometry and precise poses for
real-world images.
Related papers
- G-NeRF: Geometry-enhanced Novel View Synthesis from Single-View Images [45.66479596827045]
We propose a Geometry-enhanced NeRF (G-NeRF), which seeks to enhance the geometry priors by a geometry-guided multi-view synthesis approach.
To tackle the absence of multi-view supervision for single-view images, we design the depth-aware training approach.
arXiv Detail & Related papers (2024-04-11T04:58:18Z) - LIST: Learning Implicitly from Spatial Transformers for Single-View 3D
Reconstruction [5.107705550575662]
List is a novel neural architecture that leverages local and global image features to reconstruct geometric and topological structure of a 3D object from a single image.
We show the superiority of our model in reconstructing 3D objects from both synthetic and real-world images against the state of the art.
arXiv Detail & Related papers (2023-07-23T01:01:27Z) - 3D Surface Reconstruction in the Wild by Deforming Shape Priors from
Synthetic Data [24.97027425606138]
Reconstructing the underlying 3D surface of an object from a single image is a challenging problem.
We present a new method for joint category-specific 3D reconstruction and object pose estimation from a single image.
Our approach achieves state-of-the-art reconstruction performance across several real-world datasets.
arXiv Detail & Related papers (2023-02-24T20:37:27Z) - Single-view 3D Mesh Reconstruction for Seen and Unseen Categories [69.29406107513621]
Single-view 3D Mesh Reconstruction is a fundamental computer vision task that aims at recovering 3D shapes from single-view RGB images.
This paper tackles Single-view 3D Mesh Reconstruction, to study the model generalization on unseen categories.
We propose an end-to-end two-stage network, GenMesh, to break the category boundaries in reconstruction.
arXiv Detail & Related papers (2022-08-04T14:13:35Z) - Beyond 3DMM: Learning to Capture High-fidelity 3D Face Shape [77.95154911528365]
3D Morphable Model (3DMM) fitting has widely benefited face analysis due to its strong 3D priori.
Previous reconstructed 3D faces suffer from degraded visual verisimilitude due to the loss of fine-grained geometry.
This paper proposes a complete solution to capture the personalized shape so that the reconstructed shape looks identical to the corresponding person.
arXiv Detail & Related papers (2022-04-09T03:46:18Z) - Learnable Triangulation for Deep Learning-based 3D Reconstruction of
Objects of Arbitrary Topology from Single RGB Images [12.693545159861857]
We propose a novel deep reinforcement learning-based approach for 3D object reconstruction from monocular images.
The proposed method outperforms the state-of-the-art in terms of visual quality, reconstruction accuracy, and computational time.
arXiv Detail & Related papers (2021-09-24T09:44:22Z) - Learning 3D Face Reconstruction with a Pose Guidance Network [49.13404714366933]
We present a self-supervised learning approach to learning monocular 3D face reconstruction with a pose guidance network (PGN)
First, we unveil the bottleneck of pose estimation in prior parametric 3D face learning methods, and propose to utilize 3D face landmarks for estimating pose parameters.
With our specially designed PGN, our model can learn from both faces with fully labeled 3D landmarks and unlimited unlabeled in-the-wild face images.
arXiv Detail & Related papers (2020-10-09T06:11:17Z) - Pix2Surf: Learning Parametric 3D Surface Models of Objects from Images [64.53227129573293]
We investigate the problem of learning to generate 3D parametric surface representations for novel object instances, as seen from one or more views.
We design neural networks capable of generating high-quality parametric 3D surfaces which are consistent between views.
Our method is supervised and trained on a public dataset of shapes from common object categories.
arXiv Detail & Related papers (2020-08-18T06:33:40Z) - Deep Geometric Texture Synthesis [83.9404865744028]
We propose a novel framework for synthesizing geometric textures.
It learns texture statistics from local neighborhoods of a single reference 3D model.
Our network displaces mesh vertices in any direction, enabling synthesis of geometric textures.
arXiv Detail & Related papers (2020-06-30T19:36:38Z) - Learning to Detect 3D Reflection Symmetry for Single-View Reconstruction [32.14605731030579]
3D reconstruction from a single RGB image is a challenging problem in computer vision.
Previous methods are usually solely data-driven, which lead to inaccurate 3D shape recovery and limited generalization capability.
We present a geometry-based end-to-end deep learning framework that first detects the mirror plane of reflection symmetry that commonly exists in man-made objects and then predicts depth maps by finding the intra-image pixel-wise correspondence of the symmetry.
arXiv Detail & Related papers (2020-06-17T17:58:59Z) - Deep 3D Portrait from a Single Image [54.634207317528364]
We present a learning-based approach for recovering the 3D geometry of human head from a single portrait image.
A two-step geometry learning scheme is proposed to learn 3D head reconstruction from in-the-wild face images.
We evaluate the accuracy of our method both in 3D and with pose manipulation tasks on 2D images.
arXiv Detail & Related papers (2020-04-24T08:55:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.