論文の概要: Object Goal Navigation Based on Semantics and RGB Ego View
- arxiv url: http://arxiv.org/abs/2210.11543v1
- Date: Thu, 20 Oct 2022 19:23:08 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-24 15:46:52.236757
- Title: Object Goal Navigation Based on Semantics and RGB Ego View
- Title(参考訳): セマンティクスとrgb egoビューに基づくオブジェクトゴールナビゲーション
- Authors: Snehasis Banerjee, Brojeshwar Bhowmick, Ruddra Dev Roychoudhury
- Abstract要約: 本稿では,RGBエゴビューを前提として,サービスロボットが屋内環境のセマンティックな意思決定を行えるようにするためのアーキテクチャと方法論を提案する。
ロボットはジオセムマップ(幾何マップと意味マップのリレーショナル組み合わせ)に基づいてナビゲートする。
提案手法は, 平均完了時間に対するゲーミフィケーション評価において, 人間のユーザよりも優れていた。
- 参考スコア(独自算出の注目度): 9.702784248870522
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents an architecture and methodology to empower a service
robot to navigate an indoor environment with semantic decision making, given
RGB ego view. This method leverages the knowledge of robot's actuation
capability and that of scenes, objects and their relations -- represented in a
semantic form. The robot navigates based on GeoSem map - a relational
combination of geometric and semantic map. The goal given to the robot is to
find an object in a unknown environment with no navigational map and only
egocentric RGB camera perception. The approach is tested both on a simulation
environment and real life indoor settings. The presented approach was found to
outperform human users in gamified evaluations with respect to average
completion time.
- Abstract(参考訳): 本稿では、RGBエゴビューを前提として、サービスロボットが屋内環境を意味決定でナビゲートするためのアーキテクチャと方法論を提案する。
本手法は,ロボットのアクティベーション能力とシーン,オブジェクト,およびそれらの関係の知識を意味的形式で表現する。
ロボットはジオセムマップ(幾何マップと意味マップのリレーショナル組み合わせ)に基づいてナビゲートする。
ロボットに与えられたゴールは、ナビゲーションマップがなく、自我中心のRGBカメラしか認識できない未知の環境で物体を見つけることである。
この手法はシミュレーション環境と実生活屋内環境の両方でテストされる。
提案手法は, 平均完了時間に対するゲーミフィケーション評価において, 人間のユーザよりも優れていた。
関連論文リスト
- Autonomous Exploration and Semantic Updating of Large-Scale Indoor Environments with Mobile Robots [1.8791971592960612]
移動ロボットが未知の環境を自律的に探索できる新しいロボットシステムを提案する。
ロボットは、93m×90mのフロアを意味的にマッピングし、オブジェクトが環境に移動されるとセマンティックマップを更新する。
論文 参考訳(メタデータ) (2024-09-23T19:25:03Z) - Polaris: Open-ended Interactive Robotic Manipulation via Syn2Real Visual Grounding and Large Language Models [53.22792173053473]
我々はPolarisという対話型ロボット操作フレームワークを紹介した。
ポラリスはGPT-4と接地された視覚モデルを利用して知覚と相互作用を統合する。
本稿では,Syn2Real(Synthetic-to-Real)ポーズ推定パイプラインを提案する。
論文 参考訳(メタデータ) (2024-08-15T06:40:38Z) - Learning Semantic Traversability with Egocentric Video and Automated Annotation Strategy [3.713586225621126]
ロボットは、シーンのセマンティック理解に基づいて、画像内のセマンティック・トラバース可能な地形を識別する能力を持つ必要がある。
この推論能力はセマンティックトラバーサビリティに基づいており、テストドメイン上で微調整されたセマンティックセグメンテーションモデルを使用して頻繁に達成される。
本稿では,エゴセントリックなビデオと自動アノテーションプロセスを用いて,セマンティック・トラバーサビリティ推定器を訓練するための効果的な手法を提案する。
論文 参考訳(メタデータ) (2024-06-05T06:40:04Z) - Interactive Semantic Map Representation for Skill-based Visual Object
Navigation [43.71312386938849]
本稿では,室内環境との相互作用にともなうシーンセマンティックマップの表現について紹介する。
我々はこの表現をSkillTronと呼ばれる本格的なナビゲーション手法に実装した。
提案手法により,ロボット探索の中間目標とオブジェクトナビゲーションの最終目標の両方を形成できる。
論文 参考訳(メタデータ) (2023-11-07T16:30:12Z) - Object Goal Navigation with Recursive Implicit Maps [92.6347010295396]
対象目標ナビゲーションのための暗黙的な空間マップを提案する。
提案手法は, 挑戦的なMP3Dデータセット上での技量を著しく上回る。
我々は、実際のロボットにモデルをデプロイし、実際のシーンでオブジェクトゴールナビゲーションの結果を奨励する。
論文 参考訳(メタデータ) (2023-08-10T14:21:33Z) - Gesture2Path: Imitation Learning for Gesture-aware Navigation [54.570943577423094]
Gesture2Pathは、画像に基づく模倣学習とモデル予測制御を組み合わせた新しいソーシャルナビゲーション手法である。
実際のロボットに本手法をデプロイし,4つのジェスチャーナビゲーションシナリオに対するアプローチの有効性を示す。
論文 参考訳(メタデータ) (2022-09-19T23:05:36Z) - Rapid Exploration for Open-World Navigation with Latent Goal Models [78.45339342966196]
多様なオープンワールド環境における自律的な探索とナビゲーションのためのロボット学習システムについて述べる。
本手法のコアとなるのは、画像の非パラメトリックトポロジカルメモリとともに、距離と行動の学習された潜在変数モデルである。
学習方針を規則化するために情報ボトルネックを使用し、(i)目標のコンパクトな視覚的表現、(ii)一般化能力の向上、(iii)探索のための実行可能な目標をサンプリングするためのメカニズムを提供する。
論文 参考訳(メタデータ) (2021-04-12T23:14:41Z) - SOON: Scenario Oriented Object Navigation with Graph-based Exploration [102.74649829684617]
人間のように3Dエンボディ環境のどこからでも言語ガイドされたターゲットに向かって移動する能力は、インテリジェントロボットの「聖杯」目標の1つです。
ほとんどのビジュアルナビゲーションベンチマークは、ステップバイステップの詳細な命令セットに導かれ、固定された出発点から目標に向かって移動することに焦点を当てている。
このアプローチは、人間だけが物体とその周囲がどのように見えるかを説明する現実世界の問題から逸脱し、ロボットにどこからでも航行を依頼する。
論文 参考訳(メタデータ) (2021-03-31T15:01:04Z) - Few-Shot Visual Grounding for Natural Human-Robot Interaction [0.0]
本稿では,人間ユーザによって音声で示される,混み合ったシーンから対象物を分割するソフトウェアアーキテクチャを提案する。
システムのコアでは、視覚的な接地のためにマルチモーダルディープニューラルネットワークを使用します。
公開シーンデータセットから収集した実RGB-Dデータに対して,提案モデルの性能を評価する。
論文 参考訳(メタデータ) (2021-03-17T15:24:02Z) - Lifelong update of semantic maps in dynamic environments [2.343080600040765]
ロボットは周囲から知覚される生の情報を通じて世界を理解する。
ロボットとユーザの両方が理解している高度な情報を含むセマンティックマップは、共有表現としてより適している。
セマンティックマップをフロアクリーニングロボット群におけるユーザインタフェースとして使用しています。
論文 参考訳(メタデータ) (2020-10-17T18:44:33Z) - Object Goal Navigation using Goal-Oriented Semantic Exploration [98.14078233526476]
本研究は,未確認環境における対象カテゴリーのインスタンスにナビゲートするオブジェクトゴールナビゲーションの問題を研究する。
本稿では,表層的なセマンティックマップを構築し,効率的に環境を探索する「ゴール指向セマンティック探索」というモジュールシステムを提案する。
論文 参考訳(メタデータ) (2020-07-01T17:52:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。