論文の概要: Syntax-guided Localized Self-attention by Constituency Syntactic
Distance
- arxiv url: http://arxiv.org/abs/2210.11759v1
- Date: Fri, 21 Oct 2022 06:37:25 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-24 14:45:12.584936
- Title: Syntax-guided Localized Self-attention by Constituency Syntactic
Distance
- Title(参考訳): 構成統語距離による構文誘導型局所的自己アテンション
- Authors: Shengyuan Hou, Jushi Kai, Haotian Xue, Bingyu Zhu, Bo Yuan, Longtao
Huang, Xinbing Wang and Zhouhan Lin
- Abstract要約: 本稿では,Transformerのための構文誘導型ローカライズ自己アテンションを提案する。
外部の選挙区から直接文法構造を組み込むことができる。
実験結果から,本モデルによる翻訳性能の向上が期待できることがわかった。
- 参考スコア(独自算出の注目度): 26.141356981833862
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Recent works have revealed that Transformers are implicitly learning the
syntactic information in its lower layers from data, albeit is highly dependent
on the quality and scale of the training data. However, learning syntactic
information from data is not necessary if we can leverage an external syntactic
parser, which provides better parsing quality with well-defined syntactic
structures. This could potentially improve Transformer's performance and sample
efficiency. In this work, we propose a syntax-guided localized self-attention
for Transformer that allows directly incorporating grammar structures from an
external constituency parser. It prohibits the attention mechanism to
overweight the grammatically distant tokens over close ones. Experimental
results show that our model could consistently improve translation performance
on a variety of machine translation datasets, ranging from small to large
dataset sizes, and with different source languages.
- Abstract(参考訳): 近年の研究では、トランスフォーマーがデータから下位層における構文情報を暗黙的に学習していることが判明しているが、トレーニングデータの質と規模に大きく依存している。
しかし,データから構文情報を学習するには外部構文解析器を利用する必要がある。
これにより、Transformerのパフォーマンスとサンプル効率が向上する可能性がある。
本研究では,外部構成構文解析器から文法構造を直接組み込む手法を提案する。
閉じたトークンよりも文法的に遠いトークンを重み付けするアテンションメカニズムを禁止している。
実験の結果,小型から大規模まで多種多様な機械翻訳データセットの翻訳性能を,異なるソース言語を用いて一貫して向上させることができることがわかった。
関連論文リスト
- Structural Biases for Improving Transformers on Translation into
Morphologically Rich Languages [120.74406230847904]
TP-Transformerは従来のTransformerアーキテクチャを拡張し、構造を表現するコンポーネントを追加する。
第2の方法は、形態的トークン化でデータをセグメント化することで、データレベルで構造を付与する。
これらの2つのアプローチのそれぞれが、ネットワークがより良いパフォーマンスを達成することを可能にすることは分かっていますが、この改善はデータセットのサイズに依存します。
論文 参考訳(メタデータ) (2022-08-11T22:42:24Z) - Multilingual Extraction and Categorization of Lexical Collocations with
Graph-aware Transformers [86.64972552583941]
我々は,グラフ対応トランスフォーマアーキテクチャにより拡張されたBERTに基づくシーケンスタグ付けモデルを提案し,コンテキストにおけるコロケーション認識の課題について評価した。
以上の結果から, モデルアーキテクチャにおける構文的依存関係を明示的に符号化することは有用であり, 英語, スペイン語, フランス語におけるコロケーションのタイプ化の差異について考察する。
論文 参考訳(メタデータ) (2022-05-23T16:47:37Z) - Transformer Grammars: Augmenting Transformer Language Models with
Syntactic Inductive Biases at Scale [31.293175512404172]
Transformer Grammarsは、Transformerの表現力、スケーラビリティ、強力なパフォーマンスを組み合わせたTransformer言語モデルのクラスです。
また, Transformer Grammars は, 構文に敏感な言語モデリング評価指標において, 各種の強力なベースラインを上回ります。
論文 参考訳(メタデータ) (2022-03-01T17:22:31Z) - GroupBERT: Enhanced Transformer Architecture with Efficient Grouped
Structures [57.46093180685175]
トランスフォーマー層の構造を改良し,より効率的なアーキテクチャを実現する。
自己認識モジュールを補完する畳み込みモジュールを追加し、局所的およびグローバルな相互作用の学習を分離する。
得られたアーキテクチャを言語表現学習に適用し、異なるスケールのBERTモデルと比較して優れた性能を示す。
論文 参考訳(メタデータ) (2021-06-10T15:41:53Z) - Adapting Pretrained Transformer to Lattices for Spoken Language
Understanding [39.50831917042577]
ASR(Automatic Speech Recognitionr)が生成した1-best結果とは対照的に格子の符号化により,音声言語理解(SLU)の性能が向上することが示されている。
本稿では,事前学習したトランスフォーマーを格子入力に適用し,音声言語に特化して理解タスクを実行することを目的とする。
論文 参考訳(メタデータ) (2020-11-02T07:14:34Z) - Learning Source Phrase Representations for Neural Machine Translation [65.94387047871648]
本稿では,対応するトークン表現から句表現を生成可能な注意句表現生成機構を提案する。
実験では,強力なトランスフォーマーベースライン上でのWMT 14の英語・ドイツ語・英語・フランス語タスクにおいて,大幅な改善が得られた。
論文 参考訳(メタデータ) (2020-06-25T13:43:11Z) - Relative Positional Encoding for Speech Recognition and Direct
Translation [72.64499573561922]
相対位置符号化方式を音声変換器に適用する。
その結果,ネットワークは音声データに存在する変動分布に適応できることがわかった。
論文 参考訳(メタデータ) (2020-05-20T09:53:06Z) - Syntax-aware Data Augmentation for Neural Machine Translation [76.99198797021454]
本稿では,ニューラルマシン翻訳のための新しいデータ拡張戦略を提案する。
文中の役割を考慮し,単語選択のための文特異的確率を設定した。
提案手法はWMT14の英語-ドイツ語データセットとIWSLT14のドイツ語-英語データセットを用いて評価する。
論文 参考訳(メタデータ) (2020-04-29T13:45:30Z) - Stacked DeBERT: All Attention in Incomplete Data for Text Classification [8.900866276512364]
変換器から双方向表現を重畳するスタックドデノナイズ(Stacked Denoising Bidirectional Representations)を提案する。
本モデルでは, 感情や意図の分類作業において, 音声テキスト誤りのあるツイートやテキストに現れる非公式/不正テキストにおいて, F1スコアが向上し, 堅牢性が向上したことを示す。
論文 参考訳(メタデータ) (2020-01-01T04:49:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。