論文の概要: Discovering New Intents Using Latent Variables
- arxiv url: http://arxiv.org/abs/2210.11804v1
- Date: Fri, 21 Oct 2022 08:29:45 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-24 14:43:37.314094
- Title: Discovering New Intents Using Latent Variables
- Title(参考訳): 潜在変数を用いた新しいインテントの発見
- Authors: Yunhua Zhou, Peiju Liu, Yuxin Wang, Xipeng QIu
- Abstract要約: 本稿では,意図の割り当てを潜伏変数として扱う意図を発見するための確率的フレームワークを提案する。
E-step, we conducting intents and explore the intrinsic structure of unlabeled data by the rear of intent assignments。
M段階において、ラベル付きデータの識別を最適化することにより、既知の意図から伝達される事前知識の忘れを緩和する。
- 参考スコア(独自算出の注目度): 51.50374666602328
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Discovering new intents is of great significance to establishing Bootstrapped
Task-Oriented Dialogue System. Most existing methods either lack the ability to
transfer prior knowledge in the known intent data or fall into the dilemma of
forgetting prior knowledge in the follow-up. More importantly, these methods do
not deeply explore the intrinsic structure of unlabeled data, so they can not
seek out the characteristics that make an intent in general. In this paper,
starting from the intuition that discovering intents could be beneficial to the
identification of the known intents, we propose a probabilistic framework for
discovering intents where intent assignments are treated as latent variables.
We adopt Expectation Maximization framework for optimization. Specifically, In
E-step, we conduct discovering intents and explore the intrinsic structure of
unlabeled data by the posterior of intent assignments. In M-step, we alleviate
the forgetting of prior knowledge transferred from known intents by optimizing
the discrimination of labeled data. Extensive experiments conducted in three
challenging real-world datasets demonstrate our method can achieve substantial
improvements.
- Abstract(参考訳): 新しい意図を明らかにすることは、Bootstrapped Task-Oriented Dialogue Systemを確立する上で非常に重要である。
既存のほとんどの方法は、既知の意図データで事前知識を転送する能力が欠けているか、フォローアップで事前知識を忘れるジレンマに陥る。
さらに重要なことに、これらの手法はラベルのないデータの本質的な構造を深く研究していないため、一般的に意図を与える特徴を探せません。
本稿では,意図の発見が既知の意図の同定に有用であるという直感から,意図の割り当てを潜伏変数として扱う意図の発見のための確率的枠組みを提案する。
我々は最適化のために期待最大化フレームワークを採用する。
特に、e-stepでは、意図の発見を行い、意図の割り当ての後方でラベルのないデータの本質的構造を探索する。
mステップでは、ラベル付きデータの識別を最適化することにより、既知の意図から転送される事前知識の忘れを緩和する。
3つの挑戦的な実世界のデータセットで実施された大規模な実験は、我々の手法が大幅に改善できることを示した。
関連論文リスト
- ActiveAD: Planning-Oriented Active Learning for End-to-End Autonomous
Driving [96.92499034935466]
自動運転のためのエンドツーエンドの差別化学習は、最近顕著なパラダイムになっている。
第一のボトルネックは、高品質なラベル付きデータに対する大胆な欲求にある。
収集した生データの一部を段階的に注釈付けする計画指向のアクティブラーニング手法を提案する。
論文 参考訳(メタデータ) (2024-03-05T11:39:07Z) - XAL: EXplainable Active Learning Makes Classifiers Better Low-resource Learners [71.8257151788923]
低リソーステキスト分類のための新しい説明可能なアクティブラーニングフレームワーク(XAL)を提案する。
XALは分類器に対して、推論を正当化し、合理的な説明ができないラベルのないデータを掘り下げることを推奨している。
6つのデータセットの実験では、XALは9つの強いベースラインに対して一貫した改善を達成している。
論文 参考訳(メタデータ) (2023-10-09T08:07:04Z) - Knowledge Combination to Learn Rotated Detection Without Rotated
Annotation [53.439096583978504]
回転バウンディングボックスは、伸長したオブジェクトの出力あいまいさを劇的に減少させる。
この効果にもかかわらず、回転検出器は広く使われていない。
本稿では,モデルが正確な回転ボックスを予測できるフレームワークを提案する。
論文 参考訳(メタデータ) (2023-04-05T03:07:36Z) - New Intent Discovery with Pre-training and Contrastive Learning [21.25371293641141]
新しい意図発見は、ユーザ発話から新しい意図カテゴリーを明らかにして、サポート対象クラスのセットを拡張することを目的としている。
既存のアプローチは通常、大量のラベル付き発話に依存する。
本稿では,クラスタリングのためのラベルなしデータにおける自己超越的信号を活用するために,新たなコントラスト損失を提案する。
論文 参考訳(メタデータ) (2022-05-25T17:07:25Z) - Learning Discriminative Representations and Decision Boundaries for Open
Intent Detection [16.10123071366136]
オープンインテント検出は自然言語理解において重要な問題である。
オープンな意図検出のための距離認識意図表現と適応的決定境界を学習するDA-ADBを提案する。
我々のフレームワークは3つのベンチマークデータセットで大幅に改善されている。
論文 参考訳(メタデータ) (2022-03-11T10:02:09Z) - A Bayesian Framework for Information-Theoretic Probing [51.98576673620385]
我々は、探索は相互情報を近似するものとみなすべきであると論じる。
これは、表現が元の文とターゲットタスクに関する全く同じ情報をエンコードしているというかなり直感的な結論を導いた。
本稿では,ベイズ的相互情報(Bayesian mutual information)と呼ぶものを測定するための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-09-08T18:08:36Z) - Generalized Zero-shot Intent Detection via Commonsense Knowledge [5.398580049917152]
学習データ不足の問題を克服するために,教師なしの方法でコモンセンス知識を活用する意図検出モデル RIDE を提案する。
RIDEは、発話と意図ラベルの間の深い意味的関係をキャプチャする、堅牢で一般化可能な関係メタ機能を計算する。
広範に使用されている3つのインテント検出ベンチマークに関する広範囲な実験的分析により、関係メタ機能により、目に見えないインテントと見えないインテントの両方を検出する精度が著しく向上することが示された。
論文 参考訳(メタデータ) (2021-02-04T23:36:41Z) - Deep Open Intent Classification with Adaptive Decision Boundary [21.478553057876972]
オープン意図分類のための適応決定境界(ADB)を学習するための後処理手法を提案する。
具体的には,経験的リスクとオープンスペースリスクを両立させる新たな損失関数を提案する。
私たちのアプローチは、ラベル付きデータが少なく、既知の意図が少ないと驚くほど非感受性です。
論文 参考訳(メタデータ) (2020-12-18T13:05:11Z) - Discovering New Intents with Deep Aligned Clustering [19.11073686645496]
限定された既知の意図データを用いて新しい意図を発見するための効果的な方法であるDeep Aligned Clusteringを提案する。
未知の新たな意図によって、低信頼な意図的クラスタを排除し、意図的カテゴリの数を予測する。
2つのベンチマークデータセットの実験は、私たちの方法がより堅牢であり、最先端の方法よりも大幅に改善されることを示しています。
論文 参考訳(メタデータ) (2020-12-16T14:32:06Z) - Incremental Object Detection via Meta-Learning [77.55310507917012]
本稿では,段階的タスク間の情報を最適に共有するように,モデル勾配を再形成するメタラーニング手法を提案する。
既存のメタ学習法と比較して,本手法はタスク非依存であり,オブジェクト検出のための高容量モデルに新たなクラスやスケールを段階的に追加することができる。
論文 参考訳(メタデータ) (2020-03-17T13:40:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。