A quantum algorithm for solving open system dynamics on quantum
computers using noise
- URL: http://arxiv.org/abs/2210.12138v3
- Date: Mon, 11 Dec 2023 14:39:31 GMT
- Title: A quantum algorithm for solving open system dynamics on quantum
computers using noise
- Authors: Juha Lepp\"akangas, Nicolas Vogt, Keith R. Fratus, Kirsten Bark, Jesse
A. Vaitkus, Pascal Stadler, Jan-Michael Reiner, Sebastian Zanker, Michael
Marthaler
- Abstract summary: We present a quantum algorithm that uses noise as a resource.
The goal of our quantum algorithm is the calculation of operator averages of an open quantum system evolving in time.
We find that classes of open quantum systems exist where our algorithm performs very well, even with gate errors as high as 1%.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper we present a quantum algorithm that uses noise as a resource.
The goal of our quantum algorithm is the calculation of operator averages of an
open quantum system evolving in time. Selected low-noise system qubits and
noisy bath qubits represent the system and the bath of the open quantum system.
All incoherent qubit noise can be mapped to bath spectral functions. The form
of the spectral functions can be tuned digitally, allowing for the time
evolution of a wide range of open-system models at finite temperature. We study
the feasibility of this approach with a focus on the solution of the spin-boson
model and assume intrinsic qubit noise that is dominated by damping and
dephasing. We find that classes of open quantum systems exist where our
algorithm performs very well, even with gate errors as high as 1%. In general
the presented algorithm performs best if the system-bath interactions can be
decomposed into native gates.
Related papers
- Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Practical limitations of quantum data propagation on noisy quantum processors [0.9362259192191963]
We show that owing to the noisy nature of current quantum processors, such a quantum algorithm will require single- and two-qubit gates with very low error probability to produce reliable results.
Specifically, we provide the upper bounds on how the relative error in variational parameters' propagation scales with the probability of noise in quantum hardware.
arXiv Detail & Related papers (2023-06-22T17:12:52Z) - Limitations of Noisy Quantum Devices in Computational and Entangling
Power [5.178527492542246]
We show that noisy quantum devices with a circuit depth of more than $O(log n)$ provide no advantages in any quantum algorithms.
We also study the maximal entanglement that noisy quantum devices can produce under one- and two-dimensional qubit connections.
arXiv Detail & Related papers (2023-06-05T12:29:55Z) - Escaping Local Minima with Quantum Coherent Cooling [0.9418857940730343]
We propose a hybrid quantum-classical algorithm for finding the global minima.
Our approach utilizes quantum coherent cooling to facilitate coordinative tunneling through energy barriers.
Our proposed scheme can be implemented in the circuit quantum electrodynamics (cQED) system using a quantum cavity.
arXiv Detail & Related papers (2023-02-21T03:43:13Z) - Optimal quantum control via genetic algorithms for quantum state
engineering in driven-resonator mediated networks [68.8204255655161]
We employ a machine learning-enabled approach to quantum state engineering based on evolutionary algorithms.
We consider a network of qubits -- encoded in the states of artificial atoms with no direct coupling -- interacting via a common single-mode driven microwave resonator.
We observe high quantum fidelities and resilience to noise, despite the algorithm being trained in the ideal noise-free setting.
arXiv Detail & Related papers (2022-06-29T14:34:00Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vazirani algorithm allows one to determine a bit string encoded into an oracle.
We analyze in detail the quantum resources in the Bernstein-Vazirani algorithm.
We show that in the absence of entanglement, the performance of the algorithm is directly related to the amount of quantum coherence in the initial state.
arXiv Detail & Related papers (2022-05-26T20:32:36Z) - Noisy Quantum Kernel Machines [58.09028887465797]
An emerging class of quantum learning machines is that based on the paradigm of quantum kernels.
We study how dissipation and decoherence affect their performance.
We show that decoherence and dissipation can be seen as an implicit regularization for the quantum kernel machines.
arXiv Detail & Related papers (2022-04-26T09:52:02Z) - A Neural-Network Variational Quantum Algorithm for Many-Body Dynamics [15.435967947933404]
We propose a neural-network variational quantum algorithm to simulate the time evolution of quantum many-body systems.
The proposed algorithm can be efficiently implemented in near-term quantum computers with low measurement cost.
arXiv Detail & Related papers (2020-08-31T02:54:09Z) - Quantum noise protects quantum classifiers against adversaries [120.08771960032033]
Noise in quantum information processing is often viewed as a disruptive and difficult-to-avoid feature, especially in near-term quantum technologies.
We show that by taking advantage of depolarisation noise in quantum circuits for classification, a robustness bound against adversaries can be derived.
This is the first quantum protocol that can be used against the most general adversaries.
arXiv Detail & Related papers (2020-03-20T17:56:14Z) - Variational Quantum Algorithms for Steady States of Open Quantum Systems [2.740982822457262]
We propose a variational quantum algorithm to find the steady state of open quantum systems.
The fidelity between the optimal mixed state and the true steady state is over 99%.
This algorithm is derived from the natural idea of expressing mixed states with purification.
arXiv Detail & Related papers (2020-01-08T14:47:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.