Escaping Local Minima with Quantum Coherent Cooling
- URL: http://arxiv.org/abs/2302.10427v2
- Date: Mon, 25 Dec 2023 00:09:55 GMT
- Title: Escaping Local Minima with Quantum Coherent Cooling
- Authors: Jia-Jin Feng, Biao Wu
- Abstract summary: We propose a hybrid quantum-classical algorithm for finding the global minima.
Our approach utilizes quantum coherent cooling to facilitate coordinative tunneling through energy barriers.
Our proposed scheme can be implemented in the circuit quantum electrodynamics (cQED) system using a quantum cavity.
- Score: 0.9418857940730343
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum cooling has demonstrated its potential in quantum computing, which
can reduce the number of control channels needed for external signals. Recent
progress also supports the possibility of maintaining quantum coherence in
large-scale systems. The limitations of classical algorithms trapped in local
minima of cost functions could be overcome using this scheme. According to
this, we propose a hybrid quantum-classical algorithm for finding the global
minima. Our approach utilizes quantum coherent cooling to facilitate
coordinative tunneling through energy barriers if the classical algorithm gets
stuck. The encoded Hamiltonian system represents the cost function, and a
quantum coherent bath in the ground state serves as a heat sink to absorb
energy from the system. Our proposed scheme can be implemented in the circuit
quantum electrodynamics (cQED) system using a quantum cavity. The provided
numerical evidence demonstrates the quantum advantage in solving spin glass
problems.
Related papers
- The multimode conditional quantum Entropy Power Inequality and the squashed entanglement of the extreme multimode bosonic Gaussian channels [53.253900735220796]
Inequality determines the minimum conditional von Neumann entropy of the output of the most general linear mixing of bosonic quantum modes.
Bosonic quantum systems constitute the mathematical model for the electromagnetic radiation in the quantum regime.
arXiv Detail & Related papers (2024-10-18T13:59:50Z) - A circuit-generated quantum subspace algorithm for the variational quantum eigensolver [0.0]
We propose combining quantum subspace techniques with the variational quantum eigensolver (VQE)
In our approach, the parameterized quantum circuit is divided into a series of smaller subcircuits.
The sequential application of these subcircuits to an initial state generates a set of wavefunctions that we use as a quantum subspace to obtain high-accuracy groundstate energies.
arXiv Detail & Related papers (2024-04-09T18:00:01Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Universal quantum computation using atoms in cross-cavity systems [0.0]
We theoretically investigate a single-step implementation of both a universal two- (CNOT) and three-qubit (quantum Fredkin) gates in a cross-cavity setup.
Within a high-cooper regime, the system exhibits an atomic-state-dependent $pi$-phase gate involving the two-mode single-photon bright and dark states.
arXiv Detail & Related papers (2023-08-28T20:09:54Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Quantum Computing Quantum Monte Carlo [8.69884453265578]
We propose a hybrid quantum-classical algorithm that integrates quantum computing and quantum Monte Carlo.
Our work paves the way to solving practical problems with intermediatescale and early-fault tolerant quantum computers.
arXiv Detail & Related papers (2022-06-21T14:26:24Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
Current generation noisy intermediate-scale quantum (NISQ) computers are severely limited in chip size and error rates.
We derive localized circuit transformations to efficiently compress quantum circuits for simulation of certain spin Hamiltonians known as free fermions.
The proposed numerical circuit compression algorithm behaves backward stable and scales cubically in the number of spins enabling circuit synthesis beyond $mathcalO(103)$ spins.
arXiv Detail & Related papers (2021-08-06T19:38:03Z) - Entangling Quantum Generative Adversarial Networks [53.25397072813582]
We propose a new type of architecture for quantum generative adversarial networks (entangling quantum GAN, EQ-GAN)
We show that EQ-GAN has additional robustness against coherent errors and demonstrate the effectiveness of EQ-GAN experimentally in a Google Sycamore superconducting quantum processor.
arXiv Detail & Related papers (2021-04-30T20:38:41Z) - Quantum simulation of open quantum systems in heavy-ion collisions [0.0]
We present a framework to simulate the dynamics of hard probes such as heavy quarks or jets in a hot, strongly-coupled quark-gluon plasma (QGP) on a quantum computer.
Our work demonstrates the feasibility of simulating open quantum systems on current and near-term quantum devices.
arXiv Detail & Related papers (2020-10-07T18:00:02Z) - Variational Quantum Algorithms for Steady States of Open Quantum Systems [2.740982822457262]
We propose a variational quantum algorithm to find the steady state of open quantum systems.
The fidelity between the optimal mixed state and the true steady state is over 99%.
This algorithm is derived from the natural idea of expressing mixed states with purification.
arXiv Detail & Related papers (2020-01-08T14:47:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.