Efficient Automatic Machine Learning via Design Graphs
- URL: http://arxiv.org/abs/2210.12257v2
- Date: Tue, 23 May 2023 21:53:04 GMT
- Title: Efficient Automatic Machine Learning via Design Graphs
- Authors: Shirley Wu, Jiaxuan You, Jure Leskovec, Rex Ying
- Abstract summary: We propose FALCON, an efficient sample-based method to search for the optimal model design.
FALCON features 1) a task-agnostic module, which performs message passing on the design graph via a Graph Neural Network (GNN), and 2) a task-specific module, which conducts label propagation of the known model performance information.
We empirically show that FALCON can efficiently obtain the well-performing designs for each task using only 30 explored nodes.
- Score: 72.85976749396745
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the success of automated machine learning (AutoML), which aims to
find the best design, including the architecture of deep networks and
hyper-parameters, conventional AutoML methods are computationally expensive and
hardly provide insights into the relations of different model design choices.
To tackle the challenges, we propose FALCON, an efficient sample-based method
to search for the optimal model design. Our key insight is to model the design
space of possible model designs as a design graph, where the nodes represent
design choices, and the edges denote design similarities. FALCON features 1) a
task-agnostic module, which performs message passing on the design graph via a
Graph Neural Network (GNN), and 2) a task-specific module, which conducts label
propagation of the known model performance information on the design graph.
Both modules are combined to predict the design performances in the design
space, navigating the search direction. We conduct extensive experiments on 27
node and graph classification tasks from various application domains, and an
image classification task on the CIFAR-10 dataset. We empirically show that
FALCON can efficiently obtain the well-performing designs for each task using
only 30 explored nodes. Specifically, FALCON has a comparable time cost with
the one-shot approaches while achieving an average improvement of 3.3% compared
with the best baselines.
Related papers
- Towards Automated Model Design on Recommender Systems [21.421326082345136]
We introduce a novel paradigm that utilizes weight sharing to explore abundant solution spaces.
From a co-design perspective, we achieve 2x FLOPs efficiency, 1.8x energy efficiency, and 1.5x performance improvements in recommender models.
arXiv Detail & Related papers (2024-11-12T06:03:47Z) - Bridging Design Gaps: A Parametric Data Completion Approach With Graph Guided Diffusion Models [9.900586490845694]
This study introduces a generative imputation model leveraging graph attention networks and tabular diffusion models for completing missing parametric data in engineering designs.
We demonstrate our model significantly outperforms existing classical methods, such as MissForest, hotDeck, PPCA, and TabCSDI in both the accuracy and diversity of imputation options.
The graph model helps accurately capture and impute complex parametric interdependencies from an assembly graph, which is key for design problems.
arXiv Detail & Related papers (2024-06-17T16:03:17Z) - Rethinking Personalized Federated Learning with Clustering-based Dynamic
Graph Propagation [48.08348593449897]
We propose a simple yet effective personalized federated learning framework.
We group clients into multiple clusters based on their model training status and data distribution on the server side.
We conduct experiments on three image benchmark datasets and create synthetic structured datasets with three types of typologies.
arXiv Detail & Related papers (2024-01-29T04:14:02Z) - Compositional Generative Inverse Design [69.22782875567547]
Inverse design, where we seek to design input variables in order to optimize an underlying objective function, is an important problem.
We show that by instead optimizing over the learned energy function captured by the diffusion model, we can avoid such adversarial examples.
In an N-body interaction task and a challenging 2D multi-airfoil design task, we demonstrate that by composing the learned diffusion model at test time, our method allows us to design initial states and boundary shapes.
arXiv Detail & Related papers (2024-01-24T01:33:39Z) - AutoTransfer: AutoML with Knowledge Transfer -- An Application to Graph
Neural Networks [75.11008617118908]
AutoML techniques consider each task independently from scratch, leading to high computational cost.
Here we propose AutoTransfer, an AutoML solution that improves search efficiency by transferring the prior architectural design knowledge to the novel task of interest.
arXiv Detail & Related papers (2023-03-14T07:23:16Z) - Unifying Flow, Stereo and Depth Estimation [121.54066319299261]
We present a unified formulation and model for three motion and 3D perception tasks.
We formulate all three tasks as a unified dense correspondence matching problem.
Our model naturally enables cross-task transfer since the model architecture and parameters are shared across tasks.
arXiv Detail & Related papers (2022-11-10T18:59:54Z) - Material Prediction for Design Automation Using Graph Representation
Learning [5.181429907321226]
We introduce a graph representation learning framework that supports the material prediction of bodies in assemblies.
We formulate the material selection task as a node-level prediction task over the assembly graph representation of CAD models and tackle it using Graph Neural Networks (GNNs)
The proposed framework can scale to large datasets and incorporate designers' knowledge into the learning process.
arXiv Detail & Related papers (2022-09-26T15:49:35Z) - PaSca: a Graph Neural Architecture Search System under the Scalable
Paradigm [24.294196319217907]
Graph neural networks (GNNs) have achieved state-of-the-art performance in various graph-based tasks.
However, GNNs do not scale well to data size and message passing steps.
This paper proposes PasCa, a new paradigm and system that offers a principled approach to systemically construct and explore the design space for scalable GNNs.
arXiv Detail & Related papers (2022-03-01T17:26:50Z) - Cross-GCN: Enhancing Graph Convolutional Network with $k$-Order Feature
Interactions [153.6357310444093]
Graph Convolutional Network (GCN) is an emerging technique that performs learning and reasoning on graph data.
We argue that existing designs of GCN forgo modeling cross features, making GCN less effective for tasks or data where cross features are important.
We design a new operator named Cross-feature Graph Convolution, which explicitly models the arbitrary-order cross features with complexity linear to feature dimension and order size.
arXiv Detail & Related papers (2020-03-05T13:05:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.