Deep Learning in Single-Cell Analysis
- URL: http://arxiv.org/abs/2210.12385v1
- Date: Sat, 22 Oct 2022 08:26:41 GMT
- Title: Deep Learning in Single-Cell Analysis
- Authors: Dylan Molho, Jiayuan Ding, Zhaoheng Li, Hongzhi Wen, Wenzhuo Tang,
Yixin Wang, Julian Venegas, Wei Jin, Renming Liu, Runze Su, Patrick Danaher,
Robert Yang, Yu Leo Lei, Yuying Xie, Jiliang Tang
- Abstract summary: Single-cell technologies are revolutionizing the entire field of biology.
Deep learning often demonstrates superior performance compared to traditional machine learning methods.
This survey will serve as a reference for biologists and computer scientists, encouraging collaborations.
- Score: 34.08722045363822
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Single-cell technologies are revolutionizing the entire field of biology. The
large volumes of data generated by single-cell technologies are
high-dimensional, sparse, heterogeneous, and have complicated dependency
structures, making analyses using conventional machine learning approaches
challenging and impractical. In tackling these challenges, deep learning often
demonstrates superior performance compared to traditional machine learning
methods. In this work, we give a comprehensive survey on deep learning in
single-cell analysis. We first introduce background on single-cell technologies
and their development, as well as fundamental concepts of deep learning
including the most popular deep architectures. We present an overview of the
single-cell analytic pipeline pursued in research applications while noting
divergences due to data sources or specific applications. We then review seven
popular tasks spanning through different stages of the single-cell analysis
pipeline, including multimodal integration, imputation, clustering, spatial
domain identification, cell-type deconvolution, cell segmentation, and
cell-type annotation. Under each task, we describe the most recent developments
in classical and deep learning methods and discuss their advantages and
disadvantages. Deep learning tools and benchmark datasets are also summarized
for each task. Finally, we discuss the future directions and the most recent
challenges. This survey will serve as a reference for biologists and computer
scientists, encouraging collaborations.
Related papers
- Interpretable deep learning in single-cell omics [5.0934939727101565]
We introduce the basics of single-cell omics technologies and the concept of interpretable deep learning.
This is followed by a review of the recent interpretable deep learning models applied to various single-cell omics research.
arXiv Detail & Related papers (2024-01-11T23:59:37Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
We develop an attention-enhanced graph autoencoder, which is designed to efficiently capture the topological features between cells.
During the clustering process, we integrated both sets of information and reconstructed the features of both cells and genes to generate a discriminative representation.
This research offers enhanced insights into the characteristics and distribution of cells, thereby laying the groundwork for early diagnosis and treatment of diseases.
arXiv Detail & Related papers (2023-11-28T09:14:55Z) - Regression-Based Analysis of Multimodal Single-Cell Data Integration
Strategies [0.0]
Multimodal single-cell technologies enable the simultaneous collection of diverse data types from individual cells.
This study highlights the exceptional performance of Echo State Networks, boasting a remarkable correlation score of 0.94.
These findings hold promise for advancing comprehension of cellular differentiation and function, leveraging the potential of Machine Learning.
arXiv Detail & Related papers (2023-11-21T16:31:27Z) - Causal machine learning for single-cell genomics [94.28105176231739]
We discuss the application of machine learning techniques to single-cell genomics and their challenges.
We first present the model that underlies most of current causal approaches to single-cell biology.
We then identify open problems in the application of causal approaches to single-cell data.
arXiv Detail & Related papers (2023-10-23T13:35:24Z) - Deep networks for system identification: a Survey [56.34005280792013]
System identification learns mathematical descriptions of dynamic systems from input-output data.
Main aim of the identified model is to predict new data from previous observations.
We discuss architectures commonly adopted in the literature, like feedforward, convolutional, and recurrent networks.
arXiv Detail & Related papers (2023-01-30T12:38:31Z) - Foundations and Recent Trends in Multimodal Machine Learning:
Principles, Challenges, and Open Questions [68.6358773622615]
This paper provides an overview of the computational and theoretical foundations of multimodal machine learning.
We propose a taxonomy of 6 core technical challenges: representation, alignment, reasoning, generation, transference, and quantification.
Recent technical achievements will be presented through the lens of this taxonomy, allowing researchers to understand the similarities and differences across new approaches.
arXiv Detail & Related papers (2022-09-07T19:21:19Z) - A Comprehensive Survey on Deep Clustering: Taxonomy, Challenges, and
Future Directions [48.97008907275482]
Clustering is a fundamental machine learning task which has been widely studied in the literature.
Deep Clustering, i.e., jointly optimizing the representation learning and clustering, has been proposed and hence attracted growing attention in the community.
We summarize the essential components of deep clustering and categorize existing methods by the ways they design interactions between deep representation learning and clustering.
arXiv Detail & Related papers (2022-06-15T15:05:13Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
We propose a novel Machine Learning architecture, which allows us to infuse a neural deep network with human-powered abstraction on the level of data.
Specifically, we train a generative model simultaneously on natural and synthetic data, so that it learns a shared representation, from which a target variable, such as the cell count, can be reliably estimated.
arXiv Detail & Related papers (2020-10-20T08:36:51Z) - A Survey of Deep Learning for Scientific Discovery [13.372738220280317]
We have seen fundamental breakthroughs in core problems in machine learning, largely driven by advances in deep neural networks.
The amount of data collected in a wide array of scientific domains is dramatically increasing in both size and complexity.
This suggests many exciting opportunities for deep learning applications in scientific settings.
arXiv Detail & Related papers (2020-03-26T06:16:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.