Deep Learning in Single-Cell and Spatial Transcriptomics Data Analysis: Advances and Challenges from a Data Science Perspective
- URL: http://arxiv.org/abs/2412.03614v2
- Date: Fri, 06 Dec 2024 01:53:50 GMT
- Title: Deep Learning in Single-Cell and Spatial Transcriptomics Data Analysis: Advances and Challenges from a Data Science Perspective
- Authors: Shuang Ge, Shuqing Sun, Huan Xu, Qiang Cheng, Zhixiang Ren,
- Abstract summary: The development of single-cell and spatial transcriptomics has revolutionized our capacity to investigate cellular properties, functions, and interactions.
However, the analysis of single-cell and spatial omics data remains challenging.
Deep learning has emerged as a powerful tool capable of handling high-dimensional complex data and automatically identifying meaningful patterns.
- Score: 19.655130697247518
- License:
- Abstract: The development of single-cell and spatial transcriptomics has revolutionized our capacity to investigate cellular properties, functions, and interactions in both cellular and spatial contexts. However, the analysis of single-cell and spatial omics data remains challenging. First, single-cell sequencing data are high-dimensional and sparse, often contaminated by noise and uncertainty, obscuring the underlying biological signals. Second, these data often encompass multiple modalities, including gene expression, epigenetic modifications, and spatial locations. Integrating these diverse data modalities is crucial for enhancing prediction accuracy and biological interpretability. Third, while the scale of single-cell sequencing has expanded to millions of cells, high-quality annotated datasets are still limited. Fourth, the complex correlations of biological tissues make it difficult to accurately reconstruct cellular states and spatial contexts. Traditional feature engineering-based analysis methods struggle to deal with the various challenges presented by intricate biological networks. Deep learning has emerged as a powerful tool capable of handling high-dimensional complex data and automatically identifying meaningful patterns, offering significant promise in addressing these challenges. This review systematically analyzes these challenges and discusses related deep learning approaches. Moreover, we have curated 21 datasets from 9 benchmarks, encompassing 58 computational methods, and evaluated their performance on the respective modeling tasks. Finally, we highlight three areas for future development from a technical, dataset, and application perspective. This work will serve as a valuable resource for understanding how deep learning can be effectively utilized in single-cell and spatial transcriptomics analyses, while inspiring novel approaches to address emerging challenges.
Related papers
- MorphoSeg: An Uncertainty-Aware Deep Learning Method for Biomedical Segmentation of Complex Cellular Morphologies [5.50767638479269]
Deep learning has revolutionized medical and biological imaging, particularly in segmentation tasks.
segmenting biological cells remains challenging due to the high variability and complexity of cell shapes.
We introduce a novel benchmark dataset of Ntera-2 cells, a pluripotent carcinoma cell line, exhibiting diverse morphologies across multiple stages of differentiation.
We propose an uncertainty-aware deep learning framework for complex cellular morphology segmentation (MorphoSeg) by incorporating sampling of virtual outliers from low-likelihood regions during training.
arXiv Detail & Related papers (2024-09-25T17:25:06Z) - FISBe: A real-world benchmark dataset for instance segmentation of long-range thin filamentous structures [4.9246627979592725]
Instance segmentation of neurons in volumetric light microscopy images of nervous systems enables groundbreaking research in neuroscience.
Yet said multi-neuron light microscopy data exhibits extremely challenging properties for the task of instance segmentation.
We release FlyLight Instance Benchmark (FISBe) dataset, the first publicly available multi-neuron light microscopy dataset with pixel-wise annotations.
arXiv Detail & Related papers (2024-03-29T19:51:34Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
We develop an attention-enhanced graph autoencoder, which is designed to efficiently capture the topological features between cells.
During the clustering process, we integrated both sets of information and reconstructed the features of both cells and genes to generate a discriminative representation.
This research offers enhanced insights into the characteristics and distribution of cells, thereby laying the groundwork for early diagnosis and treatment of diseases.
arXiv Detail & Related papers (2023-11-28T09:14:55Z) - Regression-Based Analysis of Multimodal Single-Cell Data Integration
Strategies [0.0]
Multimodal single-cell technologies enable the simultaneous collection of diverse data types from individual cells.
This study highlights the exceptional performance of Echo State Networks, boasting a remarkable correlation score of 0.94.
These findings hold promise for advancing comprehension of cellular differentiation and function, leveraging the potential of Machine Learning.
arXiv Detail & Related papers (2023-11-21T16:31:27Z) - ProBio: A Protocol-guided Multimodal Dataset for Molecular Biology Lab [67.24684071577211]
The challenge of replicating research results has posed a significant impediment to the field of molecular biology.
We first curate a comprehensive multimodal dataset, named ProBio, as an initial step towards this objective.
Next, we devise two challenging benchmarks, transparent solution tracking and multimodal action recognition, to emphasize the unique characteristics and difficulties associated with activity understanding in BioLab settings.
arXiv Detail & Related papers (2023-11-01T14:44:01Z) - Causal machine learning for single-cell genomics [94.28105176231739]
We discuss the application of machine learning techniques to single-cell genomics and their challenges.
We first present the model that underlies most of current causal approaches to single-cell biology.
We then identify open problems in the application of causal approaches to single-cell data.
arXiv Detail & Related papers (2023-10-23T13:35:24Z) - Deep Learning in Single-Cell Analysis [34.08722045363822]
Single-cell technologies are revolutionizing the entire field of biology.
Deep learning often demonstrates superior performance compared to traditional machine learning methods.
This survey will serve as a reference for biologists and computer scientists, encouraging collaborations.
arXiv Detail & Related papers (2022-10-22T08:26:41Z) - Deep neural networks approach to microbial colony detection -- a
comparative analysis [52.77024349608834]
This study investigates the performance of three deep learning approaches for object detection on the AGAR dataset.
The achieved results may serve as a benchmark for future experiments.
arXiv Detail & Related papers (2021-08-23T12:06:00Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
We propose a novel Machine Learning architecture, which allows us to infuse a neural deep network with human-powered abstraction on the level of data.
Specifically, we train a generative model simultaneously on natural and synthetic data, so that it learns a shared representation, from which a target variable, such as the cell count, can be reliably estimated.
arXiv Detail & Related papers (2020-10-20T08:36:51Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.