論文の概要: A Flexible-Frame-Rate Vision-Aided Inertial Object Tracking System for
Mobile Devices
- arxiv url: http://arxiv.org/abs/2210.12476v1
- Date: Sat, 22 Oct 2022 15:26:50 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-25 18:58:28.614471
- Title: A Flexible-Frame-Rate Vision-Aided Inertial Object Tracking System for
Mobile Devices
- Title(参考訳): モバイルデバイス用フレキシブルフレームレートビジョン支援慣性物体追跡システム
- Authors: Yo-Chung Lau, Kuan-Wei Tseng, I-Ju Hsieh, Hsiao-Ching Tseng, Yi-Ping
Hung
- Abstract要約: 本稿では,モバイルデバイス用フレキシブルフレームレートオブジェクトポーズ推定とトラッキングシステムを提案する。
高速トラッキングのためにクライアント側で慣性計測ユニット(IMU)ポーズ伝搬を行い、サーバ側でRGB画像ベースの3Dポーズ推定を行う。
我々のシステムは120FPSまでのフレキシブルフレームレートをサポートし、ローエンドデバイス上での高精度かつリアルタイムなトラッキングを保証する。
- 参考スコア(独自算出の注目度): 3.4836209951879957
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Real-time object pose estimation and tracking is challenging but essential
for emerging augmented reality (AR) applications. In general, state-of-the-art
methods address this problem using deep neural networks which indeed yield
satisfactory results. Nevertheless, the high computational cost of these
methods makes them unsuitable for mobile devices where real-world applications
usually take place. In addition, head-mounted displays such as AR glasses
require at least 90~FPS to avoid motion sickness, which further complicates the
problem. We propose a flexible-frame-rate object pose estimation and tracking
system for mobile devices. It is a monocular visual-inertial-based system with
a client-server architecture. Inertial measurement unit (IMU) pose propagation
is performed on the client side for high speed tracking, and RGB image-based 3D
pose estimation is performed on the server side to obtain accurate poses, after
which the pose is sent to the client side for visual-inertial fusion, where we
propose a bias self-correction mechanism to reduce drift. We also propose a
pose inspection algorithm to detect tracking failures and incorrect pose
estimation. Connected by high-speed networking, our system supports flexible
frame rates up to 120 FPS and guarantees high precision and real-time tracking
on low-end devices. Both simulations and real world experiments show that our
method achieves accurate and robust object tracking.
- Abstract(参考訳): リアルタイムオブジェクトのポーズ推定とトラッキングは、新しい拡張現実(AR)アプリケーションには不可欠である。
一般に、最先端の手法はディープニューラルネットワークを用いてこの問題に対処する。
しかしながら、これらの手法の計算コストが高いため、現実のアプリケーションが通常行われるモバイルデバイスには適さない。
さらに、ARメガネのようなヘッドマウントディスプレイは、運動障害を避けるために少なくとも90〜FPSを必要とするため、この問題はさらに複雑になる。
本稿では,モバイルデバイス用フレキシブルフレームレートオブジェクトポーズ推定とトラッキングシステムを提案する。
クライアントサーバアーキテクチャを備えた単眼のビジュアル慣性ベースのシステムである。
高速トラッキングのためにクライアント側で慣性計測ユニット(IMU)のポーズ伝搬を行い、RGB画像に基づく3Dポーズ推定をサーバ側で行い、正確なポーズを得る。
また,追跡障害の検出と不正確なポーズ推定を行うポーズ検査アルゴリズムを提案する。
高速ネットワークにより,120fpsまでのフレキシブルフレームレートをサポートし,ローエンドデバイスの高精度かつリアルタイムトラッキングを実現する。
シミュレーションと実世界実験の両方で,本手法が正確かつ堅牢な物体追跡を実現することを示す。
関連論文リスト
- ESVO2: Direct Visual-Inertial Odometry with Stereo Event Cameras [33.81592783496106]
イベントベースのビジュアルオドメトリーは、トラッキングとサブプロブレムを並列にマッピングすることを目的としている。
イベントベースのステレオビジュアル慣性オドメトリーシステムを構築した。
論文 参考訳(メタデータ) (2024-10-12T05:35:27Z) - DragPoser: Motion Reconstruction from Variable Sparse Tracking Signals via Latent Space Optimization [1.5603779307797123]
DragPoserは、新しいディープラーニングベースのモーションリコンストラクションシステムである。
ハードでダイナミックな制約を正確に表現します。
自然なポーズと時間的コヒーレントな動きを生み出す。
論文 参考訳(メタデータ) (2024-04-29T15:00:50Z) - VICAN: Very Efficient Calibration Algorithm for Large Camera Networks [49.17165360280794]
ポースグラフ最適化手法を拡張する新しい手法を提案する。
我々は、カメラを含む二部グラフ、オブジェクトの動的進化、各ステップにおけるカメラオブジェクト間の相対変換について考察する。
我々のフレームワークは従来のPGOソルバとの互換性を維持しているが、その有効性はカスタマイズされた最適化方式の恩恵を受けている。
論文 参考訳(メタデータ) (2024-03-25T17:47:03Z) - PNAS-MOT: Multi-Modal Object Tracking with Pareto Neural Architecture Search [64.28335667655129]
複数の物体追跡は、自律運転において重要な課題である。
トラッキングの精度が向上するにつれて、ニューラルネットワークはますます複雑になり、レイテンシが高いため、実際の運転シナリオにおける実践的な応用に課題が生じる。
本稿では,ニューラル・アーキテクチャ・サーチ(NAS)手法を用いて追跡のための効率的なアーキテクチャを探索し,比較的高い精度を維持しつつ,低リアルタイム遅延を実現することを目的とした。
論文 参考訳(メタデータ) (2024-03-23T04:18:49Z) - DORT: Modeling Dynamic Objects in Recurrent for Multi-Camera 3D Object
Detection and Tracking [67.34803048690428]
本稿では、この問題を解決するためにRecurrenT(DORT)の動的オブジェクトをモデル化することを提案する。
DORTは、重い計算負担を軽減する動き推定のために、オブジェクトワイズローカルボリュームを抽出する。
フレキシブルで実用的で、ほとんどのカメラベースの3Dオブジェクト検出器に差し込むことができる。
論文 参考訳(メタデータ) (2023-03-29T12:33:55Z) - ParticleSfM: Exploiting Dense Point Trajectories for Localizing Moving
Cameras in the Wild [57.37891682117178]
本稿では,一対の光流からの高密度対応に基づく動画の高密度間接構造抽出手法を提案する。
不規則点軌道データを処理するために,新しいニューラルネットワークアーキテクチャを提案する。
MPIシンテルデータセットを用いた実験により,我々のシステムはより正確なカメラ軌道を生成することがわかった。
論文 参考訳(メタデータ) (2022-07-19T09:19:45Z) - Real-Time Human Pose Estimation on a Smart Walker using Convolutional
Neural Networks [4.076099054649463]
スマートウォーカのコンテキストにおける患者モニタリングとデータ駆動型ヒューマン・イン・ザ・ループ制御に対する新しいアプローチを提案する。
完全かつコンパクトなボディ表現を、リアルタイムおよび安価なセンサーから抽出することができる。
有望な結果にもかかわらず、現実のシナリオにおけるリハビリテーションツールとしてのパフォーマンスを評価するために、障害のあるユーザにより多くのデータを収集する必要がある。
論文 参考訳(メタデータ) (2021-06-28T14:11:48Z) - Monocular Quasi-Dense 3D Object Tracking [99.51683944057191]
周囲の物体の将来の位置を予測し、自律運転などの多くのアプリケーションで観測者の行動を計画するためには、信頼性と正確な3D追跡フレームワークが不可欠である。
移動プラットフォーム上で撮影された2次元画像のシーケンスから,移動物体を時間とともに効果的に関連付け,その全3次元バウンディングボックス情報を推定するフレームワークを提案する。
論文 参考訳(メタデータ) (2021-03-12T15:30:02Z) - Unified Multi-Modal Landmark Tracking for Tightly Coupled
Lidar-Visual-Inertial Odometry [5.131684964386192]
視覚,ライダー,慣性情報を協調的に最適化するモバイルプラットフォームのための効率的なマルチセンサ・オドメトリーシステムを提案する。
ライダー点雲から3次元線と平面原始体を抽出する新しい手法を提案する。
システムは、脚のあるロボットによる地下探査や、動的に動くハンドヘルドデバイスによる屋外スキャンなど、さまざまなプラットフォームやシナリオでテストされてきた。
論文 参考訳(メタデータ) (2020-11-13T09:54:03Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
本稿では,モデル予測制御(MPC)の定式化を拡張したオンライン経路計画アーキテクチャを提案する。
我々のアルゴリズムは、状態推定の共分散を推論するリカレントニューラルネットワーク(RNN)とオブジェクト検出パイプラインを組み合わせる。
本手法のロバスト性は, 複雑な四足歩行ロボットの力学で検証され, ほとんどのロボットプラットフォームに適用可能である。
論文 参考訳(メタデータ) (2020-07-28T07:34:30Z) - Instant 3D Object Tracking with Applications in Augmented Reality [4.893345190925178]
3Dでオブジェクトのポーズを追跡することは拡張現実アプリケーションにとって重要なビルディングブロックである。
本研究では,物体の空間における姿勢をモバイルデバイス上でリアルタイムに追跡するインスタントモーショントラッキングシステムを提案する。
論文 参考訳(メタデータ) (2020-06-23T17:48:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。