DANLI: Deliberative Agent for Following Natural Language Instructions
- URL: http://arxiv.org/abs/2210.12485v1
- Date: Sat, 22 Oct 2022 15:57:01 GMT
- Title: DANLI: Deliberative Agent for Following Natural Language Instructions
- Authors: Yichi Zhang, Jianing Yang, Jiayi Pan, Shane Storks, Nikhil Devraj,
Ziqiao Ma, Keunwoo Peter Yu, Yuwei Bao, Joyce Chai
- Abstract summary: We propose a neuro-symbolic deliberative agent that applies reasoning and planning based on its neural and symbolic representations acquired from past experience.
We show that our deliberative agent achieves greater than 70% improvement over reactive baselines on the challenging TEACh benchmark.
- Score: 9.825482203664963
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent years have seen an increasing amount of work on embodied AI agents
that can perform tasks by following human language instructions. However, most
of these agents are reactive, meaning that they simply learn and imitate
behaviors encountered in the training data. These reactive agents are
insufficient for long-horizon complex tasks. To address this limitation, we
propose a neuro-symbolic deliberative agent that, while following language
instructions, proactively applies reasoning and planning based on its neural
and symbolic representations acquired from past experience (e.g., natural
language and egocentric vision). We show that our deliberative agent achieves
greater than 70% improvement over reactive baselines on the challenging TEACh
benchmark. Moreover, the underlying reasoning and planning processes, together
with our modular framework, offer impressive transparency and explainability to
the behaviors of the agent. This enables an in-depth understanding of the
agent's capabilities, which shed light on challenges and opportunities for
future embodied agents for instruction following. The code is available at
https://github.com/sled-group/DANLI.
Related papers
- Proactive Agent: Shifting LLM Agents from Reactive Responses to Active Assistance [95.03771007780976]
We tackle the challenge of developing proactive agents capable of anticipating and initiating tasks without explicit human instructions.
First, we collect real-world human activities to generate proactive task predictions.
These predictions are labeled by human annotators as either accepted or rejected.
The labeled data is used to train a reward model that simulates human judgment.
arXiv Detail & Related papers (2024-10-16T08:24:09Z) - Symbolic Learning Enables Self-Evolving Agents [55.625275970720374]
We introduce agent symbolic learning, a systematic framework that enables language agents to optimize themselves on their own.
Agent symbolic learning is designed to optimize the symbolic network within language agents by mimicking two fundamental algorithms in connectionist learning.
We conduct proof-of-concept experiments on both standard benchmarks and complex real-world tasks.
arXiv Detail & Related papers (2024-06-26T17:59:18Z) - AgentGym: Evolving Large Language Model-based Agents across Diverse Environments [116.97648507802926]
Large language models (LLMs) are considered a promising foundation to build such agents.
We take the first step towards building generally-capable LLM-based agents with self-evolution ability.
We propose AgentGym, a new framework featuring a variety of environments and tasks for broad, real-time, uni-format, and concurrent agent exploration.
arXiv Detail & Related papers (2024-06-06T15:15:41Z) - Exploring Autonomous Agents through the Lens of Large Language Models: A Review [0.0]
Large Language Models (LLMs) are transforming artificial intelligence, enabling autonomous agents to perform diverse tasks across various domains.
They face challenges such as multimodality, human value alignment, hallucinations, and evaluation.
Evaluation platforms like AgentBench, WebArena, and ToolLLM provide robust methods for assessing these agents in complex scenarios.
arXiv Detail & Related papers (2024-04-05T22:59:02Z) - KnowAgent: Knowledge-Augmented Planning for LLM-Based Agents [54.09074527006576]
Large Language Models (LLMs) have demonstrated great potential in complex reasoning tasks, yet they fall short when tackling more sophisticated challenges.
This inadequacy primarily stems from the lack of built-in action knowledge in language agents.
We introduce KnowAgent, a novel approach designed to enhance the planning capabilities of LLMs by incorporating explicit action knowledge.
arXiv Detail & Related papers (2024-03-05T16:39:12Z) - tagE: Enabling an Embodied Agent to Understand Human Instructions [3.943519623674811]
We introduce a novel system known as task and argument grounding for Embodied agents (tagE)
At its core, our system employs an inventive neural network model designed to extract a series of tasks from complex task instructions expressed in natural language.
Our proposed model adopts an encoder-decoder framework enriched with nested decoding to effectively extract tasks and their corresponding arguments from these intricate instructions.
arXiv Detail & Related papers (2023-10-24T08:17:48Z) - The Rise and Potential of Large Language Model Based Agents: A Survey [91.71061158000953]
Large language models (LLMs) are regarded as potential sparks for Artificial General Intelligence (AGI)
We start by tracing the concept of agents from its philosophical origins to its development in AI, and explain why LLMs are suitable foundations for agents.
We explore the extensive applications of LLM-based agents in three aspects: single-agent scenarios, multi-agent scenarios, and human-agent cooperation.
arXiv Detail & Related papers (2023-09-14T17:12:03Z) - Cognitive Architectures for Language Agents [44.89258267600489]
We propose Cognitive Architectures for Language Agents (CoALA)
CoALA describes a language agent with modular memory components, a structured action space to interact with internal memory and external environments, and a generalized decision-making process to choose actions.
We use CoALA to retrospectively survey and organize a large body of recent work, and prospectively identify actionable directions towards more capable agents.
arXiv Detail & Related papers (2023-09-05T17:56:20Z) - ExpeL: LLM Agents Are Experiential Learners [60.54312035818746]
We introduce the Experiential Learning (ExpeL) agent to allow learning from agent experiences without requiring parametric updates.
Our agent autonomously gathers experiences and extracts knowledge using natural language from a collection of training tasks.
At inference, the agent recalls its extracted insights and past experiences to make informed decisions.
arXiv Detail & Related papers (2023-08-20T03:03:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.