Probabilistic Approach to Black-Box Binary Optimization with Budget Constraints: Application to Sensor Placement
- URL: http://arxiv.org/abs/2406.05830v1
- Date: Sun, 9 Jun 2024 15:37:28 GMT
- Title: Probabilistic Approach to Black-Box Binary Optimization with Budget Constraints: Application to Sensor Placement
- Authors: Ahmed Attia,
- Abstract summary: We present a fully probabilistic approach for solving binary optimization problems with black-box objective functions and with budget constraints.
In this work we develop conditional Bernoulli distributions to model the random variable conditioned by the total number of nonzero entries.
This approach is generally applicable to binary optimization problems with nonstochastic black-box objective functions and budget constraints.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a fully probabilistic approach for solving binary optimization problems with black-box objective functions and with budget constraints. In the probabilistic approach, the optimization variable is viewed as a random variable and is associated with a parametric probability distribution. The original optimization problem is replaced with an optimization over the expected value of the original objective, which is then optimized over the probability distribution parameters. The resulting optimal parameter (optimal policy) is used to sample the binary space to produce estimates of the optimal solution(s) of the original binary optimization problem. The probability distribution is chosen from the family of Bernoulli models because the optimization variable is binary. The optimization constraints generally restrict the feasibility region. This can be achieved by modeling the random variable with a conditional distribution given satisfiability of the constraints. Thus, in this work we develop conditional Bernoulli distributions to model the random variable conditioned by the total number of nonzero entries, that is, the budget constraint. This approach (a) is generally applicable to binary optimization problems with nonstochastic black-box objective functions and budget constraints; (b) accounts for budget constraints by employing conditional probabilities that sample only the feasible region and thus considerably reduces the computational cost compared with employing soft constraints; and (c) does not employ soft constraints and thus does not require tuning of a regularization parameter, for example to promote sparsity, which is challenging in sensor placement optimization problems. The proposed approach is verified numerically by using an idealized bilinear binary optimization problem and is validated by using a sensor placement experiment in a parameter identification setup.
Related papers
- BO4IO: A Bayesian optimization approach to inverse optimization with uncertainty quantification [5.031974232392534]
This work addresses data-driven inverse optimization (IO)
The goal is to estimate unknown parameters in an optimization model from observed decisions that can be assumed to be optimal or near-optimal.
arXiv Detail & Related papers (2024-05-28T06:52:17Z) - Bayesian Optimization with Conformal Prediction Sets [44.565812181545645]
Conformal prediction is an uncertainty quantification method with coverage guarantees even for misspecified models.
We propose conformal Bayesian optimization, which directs queries towards regions of search space where the model predictions have guaranteed validity.
In many cases we find that query coverage can be significantly improved without harming sample-efficiency.
arXiv Detail & Related papers (2022-10-22T17:01:05Z) - Generalizing Bayesian Optimization with Decision-theoretic Entropies [102.82152945324381]
We consider a generalization of Shannon entropy from work in statistical decision theory.
We first show that special cases of this entropy lead to popular acquisition functions used in BO procedures.
We then show how alternative choices for the loss yield a flexible family of acquisition functions.
arXiv Detail & Related papers (2022-10-04T04:43:58Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
Tree ensembles can be well-suited for black-box optimization tasks such as algorithm tuning and neural architecture search.
Two well-known challenges in using tree ensembles for black-box optimization are (i) effectively quantifying model uncertainty for exploration and (ii) optimizing over the piece-wise constant acquisition function.
Our framework performs as well as state-of-the-art methods for unconstrained black-box optimization over continuous/discrete features and outperforms competing methods for problems combining mixed-variable feature spaces and known input constraints.
arXiv Detail & Related papers (2022-07-02T16:59:37Z) - Integrated Conditional Estimation-Optimization [6.037383467521294]
Many real-world optimization problems uncertain parameters with probability can be estimated using contextual feature information.
In contrast to the standard approach of estimating the distribution of uncertain parameters, we propose an integrated conditional estimation approach.
We show that our ICEO approach is theally consistent under moderate conditions.
arXiv Detail & Related papers (2021-10-24T04:49:35Z) - Faster Algorithm and Sharper Analysis for Constrained Markov Decision
Process [56.55075925645864]
The problem of constrained decision process (CMDP) is investigated, where an agent aims to maximize the expected accumulated discounted reward subject to multiple constraints.
A new utilities-dual convex approach is proposed with novel integration of three ingredients: regularized policy, dual regularizer, and Nesterov's gradient descent dual.
This is the first demonstration that nonconcave CMDP problems can attain the lower bound of $mathcal O (1/epsilon)$ for all complexity optimization subject to convex constraints.
arXiv Detail & Related papers (2021-10-20T02:57:21Z) - Approximate Bayesian Optimisation for Neural Networks [6.921210544516486]
A body of work has been done to automate machine learning algorithm to highlight the importance of model choice.
The necessity to solve the analytical tractability and the computational feasibility in a idealistic fashion enables to ensure the efficiency and the applicability.
arXiv Detail & Related papers (2021-08-27T19:03:32Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
It is essential to theoretically guarantee that algorithms provide small objective residual with high probability.
Existing methods for non-smooth convex optimization have complexity bounds with dependence on confidence level.
We propose novel stepsize rules for two methods with gradient clipping.
arXiv Detail & Related papers (2021-06-10T17:54:21Z) - Stochastic Learning Approach to Binary Optimization for Optimal Design
of Experiments [0.0]
We present a novel approach to binary optimization for optimal experimental design (OED) for Bayesian inverse problems governed by mathematical models such as partial differential equations.
The OED utility function, namely, the regularized optimality gradient, is cast into an objective function in the form of an expectation over a Bernoulli distribution.
The objective is then solved by using a probabilistic optimization routine to find an optimal observational policy.
arXiv Detail & Related papers (2021-01-15T03:54:12Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z) - Bilevel Optimization for Differentially Private Optimization in Energy
Systems [53.806512366696275]
This paper studies how to apply differential privacy to constrained optimization problems whose inputs are sensitive.
The paper shows that, under a natural assumption, a bilevel model can be solved efficiently for large-scale nonlinear optimization problems.
arXiv Detail & Related papers (2020-01-26T20:15:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.