Generative Modeling of High-resolution Global Precipitation Forecasts
- URL: http://arxiv.org/abs/2210.12504v1
- Date: Sat, 22 Oct 2022 17:21:16 GMT
- Title: Generative Modeling of High-resolution Global Precipitation Forecasts
- Authors: James Duncan, Shashank Subramanian, Peter Harrington
- Abstract summary: We present improvements to the architecture and training process of a current state-of-the art deep learning precipitation model (FourCastNet) using a novel generative adversarial network (GAN)
Our improvements achieve superior performance in capturing the extreme percentiles of global precipitation, while comparable to state-of-the-art NWP models in terms of forecast skill at 1--2 day lead times.
- Score: 2.1485350418225244
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Forecasting global precipitation patterns and, in particular, extreme
precipitation events is of critical importance to preparing for and adapting to
climate change. Making accurate high-resolution precipitation forecasts using
traditional physical models remains a major challenge in operational weather
forecasting as they incur substantial computational costs and struggle to
achieve sufficient forecast skill. Recently, deep-learning-based models have
shown great promise in closing the gap with numerical weather prediction (NWP)
models in terms of precipitation forecast skill, opening up exciting new
avenues for precipitation modeling. However, it is challenging for these deep
learning models to fully resolve the fine-scale structures of precipitation
phenomena and adequately characterize the extremes of the long-tailed
precipitation distribution. In this work, we present several improvements to
the architecture and training process of a current state-of-the art deep
learning precipitation model (FourCastNet) using a novel generative adversarial
network (GAN) to better capture fine scales and extremes. Our improvements
achieve superior performance in capturing the extreme percentiles of global
precipitation, while comparable to state-of-the-art NWP models in terms of
forecast skill at 1--2 day lead times. Together, these improvements set a new
state-of-the-art in global precipitation forecasting.
Related papers
- Leadsee-Precip: A Deep Learning Diagnostic Model for Precipitation [0.0]
We propose Leadsee-Precip, a global deep learning model to generate precipitation from meteorological circulation fields.
The model utilizes an information balance scheme to tackle the challenges of predicting heavy precipitation.
The heavy precipitation from Leadsee-Precip is more consistent with observations and shows competitive performance against global numerical weather prediction models.
arXiv Detail & Related papers (2024-11-19T16:51:56Z) - Multi-Source Temporal Attention Network for Precipitation Nowcasting [4.726419619132143]
Precipitation nowcasting is crucial across various industries and plays a significant role in mitigating and adapting to climate change.
We introduce an efficient deep learning model for precipitation nowcasting, capable of predicting rainfall up to 8 hours in advance with greater accuracy than existing operational models.
arXiv Detail & Related papers (2024-10-11T09:09:07Z) - Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
We focus on limited-area modeling and train our model specifically for localized region-level downstream tasks.
We consider the MENA region due to its unique climatic challenges, where accurate localized weather forecasting is crucial for managing water resources, agriculture and mitigating the impacts of extreme weather events.
Our study aims to validate the effectiveness of integrating parameter-efficient fine-tuning (PEFT) methodologies, specifically Low-Rank Adaptation (LoRA) and its variants, to enhance forecast accuracy, as well as training speed, computational resource utilization, and memory efficiency in weather and climate modeling for specific regions.
arXiv Detail & Related papers (2024-09-11T19:31:56Z) - Leveraging data-driven weather models for improving numerical weather prediction skill through large-scale spectral nudging [1.747339718564314]
This study illustrates the relative strengths and weaknesses of physics-based and AI-based approaches to weather prediction.
A hybrid NWP-AI system is proposed, wherein GEM-predicted large-scale state variables are spectrally nudged toward GraphCast predictions.
Results indicate that this hybrid approach is capable of leveraging the strengths of GraphCast to enhance the prediction skill of the GEM model.
arXiv Detail & Related papers (2024-07-08T16:39:25Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
We introduce a novel method that applies diffusion models (DM) for weather forecasting.
Our method can achieve both direct and iterative forecasting with the same modeling framework.
The flexibility and controllability of our model empowers a more trustworthy DL system for the general weather community.
arXiv Detail & Related papers (2024-02-06T21:28:42Z) - CasCast: Skillful High-resolution Precipitation Nowcasting via Cascaded
Modelling [93.65319031345197]
We propose CasCast, a cascaded framework composed of a deterministic and a probabilistic part to decouple predictions for mesoscale precipitation distributions and small-scale patterns.
CasCast significantly surpasses the baseline (up to +91.8%) for regional extreme-precipitation nowcasting.
arXiv Detail & Related papers (2024-02-06T08:30:47Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
This work presents FengWu-GHR, the first data-driven global weather forecasting model running at the 0.09$circ$ horizontal resolution.
It introduces a novel approach that opens the door for operating ML-based high-resolution forecasts by inheriting prior knowledge from a low-resolution model.
The hindcast of weather prediction in 2022 indicates that FengWu-GHR is superior to the IFS-HRES.
arXiv Detail & Related papers (2024-01-28T13:23:25Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
We develop a robust precipitation forecasting model that demonstrates resilience against spatial-temporal discrepancies.
Our approach has led to significant improvements in forecasting precision, culminating in our model securing textit1st place in the transfer learning leaderboard of the textitWeather4cast'23 competition.
arXiv Detail & Related papers (2023-11-30T08:22:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.