論文の概要: Single Image Super-Resolution via a Dual Interactive Implicit Neural
Network
- arxiv url: http://arxiv.org/abs/2210.12593v1
- Date: Sun, 23 Oct 2022 02:05:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-25 18:56:35.808494
- Title: Single Image Super-Resolution via a Dual Interactive Implicit Neural
Network
- Title(参考訳): Dual Interactive Implicit Neural Networkによる単一画像超解像
- Authors: Quan H. Nguyen, William J. Beksi
- Abstract要約: 本稿では,任意のスケール因子における単一画像の超解像処理のための新しい暗黙的ニューラルネットワークを提案する。
公開されているベンチマークデータセット上で、最先端技術に対するアプローチの有効性と柔軟性を実証する。
- 参考スコア(独自算出の注目度): 5.331665215168209
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we introduce a novel implicit neural network for the task of
single image super-resolution at arbitrary scale factors. To do this, we
represent an image as a decoding function that maps locations in the image
along with their associated features to their reciprocal pixel attributes.
Since the pixel locations are continuous in this representation, our method can
refer to any location in an image of varying resolution. To retrieve an image
of a particular resolution, we apply a decoding function to a grid of locations
each of which refers to the center of a pixel in the output image. In contrast
to other techniques, our dual interactive neural network decouples content and
positional features. As a result, we obtain a fully implicit representation of
the image that solves the super-resolution problem at (real-valued) elective
scales using a single model. We demonstrate the efficacy and flexibility of our
approach against the state of the art on publicly available benchmark datasets.
- Abstract(参考訳): 本稿では,任意のスケール因子における単一画像の超解像処理のための新しい暗黙的ニューラルネットワークを提案する。
これを実現するため、画像はデコード機能として表現され、画像内の位置と関連する特徴を相互のピクセル属性にマップする。
この表現では画素位置が連続しているため,解像度の異なる画像の任意の位置を参照することができる。
特定の解像度の画像を取得するために、出力画像中の画素の中心を示す各位置のグリッドに復号関数を適用する。
他の手法とは対照的に、我々のデュアルインタラクティブニューラルネットワークはコンテンツと位置特徴を分離する。
その結果、単一のモデルを用いて(実数値)選択的スケールでの超解像問題を解決する画像の完全な暗黙的表現が得られる。
公開されているベンチマークデータセット上で、最先端技術に対するアプローチの有効性と柔軟性を実証する。
関連論文リスト
- Pixel-Inconsistency Modeling for Image Manipulation Localization [59.968362815126326]
デジタル画像法医学は、画像認証と操作のローカライゼーションにおいて重要な役割を果たす。
本稿では,画素不整合アーチファクトの解析を通じて,一般化されたロバストな操作ローカライゼーションモデルを提案する。
実験により,本手法は固有の画素不整合偽指紋を抽出することに成功した。
論文 参考訳(メタデータ) (2023-09-30T02:54:51Z) - Adaptive Local Implicit Image Function for Arbitrary-scale
Super-resolution [61.95533972380704]
局所暗黙画像関数(LIIF)は、対応する座標を入力として、画素値が拡張される連続関数として画像を表す。
LIIFは任意のスケールの超解像タスクに適用でき、その結果、様々なアップスケーリング要因に対して単一の効率的かつ効率的なモデルが得られる。
この問題を軽減するために,新しい適応型局所像関数(A-LIIF)を提案する。
論文 参考訳(メタデータ) (2022-08-07T11:23:23Z) - Learning Enriched Features for Fast Image Restoration and Enhancement [166.17296369600774]
本稿では,ネットワーク全体を通して空間的精度の高い高解像度表現を維持することを目的とする。
我々は、高解像度の空間的詳細を同時に保存しながら、複数のスケールからの文脈情報を組み合わせた豊富な特徴集合を学習する。
提案手法は,デフォーカス・デブロアリング,画像デノイング,超解像,画像強調など,さまざまな画像処理タスクに対して,最先端の処理結果を実現する。
論文 参考訳(メタデータ) (2022-04-19T17:59:45Z) - Enhancing Multi-Scale Implicit Learning in Image Super-Resolution with
Integrated Positional Encoding [4.781615891172263]
画像超解像コンテキストにおいて,各画素を局所領域からの信号の集約とみなす。
画素領域上の周波数情報を集約することで従来の位置符号化を拡張した位置符号化(IPE)を提案する。
IPE-LIIFの定量的および定性的評価による有効性を示し、さらに画像スケールへのIPEの一般化能力を示す。
論文 参考訳(メタデータ) (2021-12-10T06:09:55Z) - Joint Implicit Image Function for Guided Depth Super-Resolution [11.325235139023931]
誘導深度超解法は低分解能でノイズの多い入力深度マップを高分解能版に復元する実用的な課題である。
一般画像の形式を採るが、新しい結合入射像関数表現を用いて重みと値の両方を学習する。
JIIF表現が誘導深度超分解能タスクに与える影響を実演し、3つの公開ベンチマークにおける最先端手法を著しく上回った。
論文 参考訳(メタデータ) (2021-07-19T09:42:18Z) - Image Inpainting Using Wasserstein Generative Adversarial Imputation
Network [0.0]
本稿では,Wasserstein Generative Adversarial Imputation Networkに基づく画像インペイントモデルを提案する。
普遍計算モデルは、十分な品質で欠落の様々なシナリオを扱うことができる。
論文 参考訳(メタデータ) (2021-06-23T05:55:07Z) - InfinityGAN: Towards Infinite-Resolution Image Synthesis [92.40782797030977]
任意の解像度画像を生成するinfinityganを提案する。
少ない計算資源でパッチバイパッチをシームレスに訓練し、推論する方法を示す。
論文 参考訳(メタデータ) (2021-04-08T17:59:30Z) - Gigapixel Histopathological Image Analysis using Attention-based Neural
Networks [7.1715252990097325]
圧縮経路と学習経路からなるCNN構造を提案する。
本手法は,グローバル情報とローカル情報の両方を統合し,入力画像のサイズに関して柔軟であり,弱い画像レベルラベルのみを必要とする。
論文 参考訳(メタデータ) (2021-01-25T10:18:52Z) - Spatially-Adaptive Pixelwise Networks for Fast Image Translation [57.359250882770525]
高速かつ効率的な画像-画像変換を目的とした新しいジェネレータアーキテクチャを提案する。
私たちはピクセルワイズネットワークを使用します。つまり、各ピクセルは他のピクセルとは独立して処理されます。
私たちのモデルは最先端のベースラインよりも最大18倍高速です。
論文 参考訳(メタデータ) (2020-12-05T10:02:03Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
畳み込みニューラルネットワーク(CNN)は、画像復元作業における従来のアプローチよりも劇的に改善されている。
ネットワーク全体を通して空間的精度の高い高解像度表現を維持することを目的とした,新しいアーキテクチャを提案する。
提案手法は,高解像度の空間的詳細を同時に保存しながら,複数のスケールからの文脈情報を組み合わせた豊富な特徴集合を学習する。
論文 参考訳(メタデータ) (2020-03-15T11:04:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。