Joint Rigid Motion Correction and Sparse-View CT via Self-Calibrating
Neural Field
- URL: http://arxiv.org/abs/2210.12731v1
- Date: Sun, 23 Oct 2022 13:55:07 GMT
- Title: Joint Rigid Motion Correction and Sparse-View CT via Self-Calibrating
Neural Field
- Authors: Qing Wu, Xin Li, Hongjiang Wei, Jingyi Yu, Yuyao Zhang
- Abstract summary: NeRF has widely received attention in Sparse-View (SV) CT reconstruction problems as a self-supervised deep learning framework.
Existing NeRF-based SVCT methods strictly suppose there is completely no relative motion during the CT acquisition.
This work proposes a self-calibrating neural field that recovers the artifacts-free image from the rigid motion-corrupted SV measurement.
- Score: 37.86878619100209
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural Radiance Field (NeRF) has widely received attention in Sparse-View
(SV) CT reconstruction problems as a self-supervised deep learning framework.
NeRF-based SVCT methods model the desired CT image as a continuous function
that maps coordinates to intensities and then train a Multi-Layer Perceptron
(MLP) to learn the function by minimizing loss on the SV measurement. Thanks to
the continuous representation provided by NeRF, the function can be
approximated well and thus the high-quality CT image is reconstructed. However,
existing NeRF-based SVCT methods strictly suppose there is completely no
relative motion during the CT acquisition because they require accurate
projection poses to simulate the X-rays that scan the SV sinogram. Therefore,
these methods suffer from severe performance drops for real SVCT imaging with
motion. To this end, this work proposes a self-calibrating neural field that
recovers the artifacts-free image from the rigid motion-corrupted SV
measurement without using any external data. Specifically, we parametrize the
coarse projection poses caused by rigid motion as trainable variables and then
jointly optimize these variables and the MLP. We perform numerical experiments
on a public COVID-19 CT dataset. The results indicate that our model
significantly outperforms two latest NeRF-based methods for SVCT reconstruction
with four different levels of rigid motion.
Related papers
- Unifying Subsampling Pattern Variations for Compressed Sensing MRI with Neural Operators [72.79532467687427]
Compressed Sensing MRI reconstructs images of the body's internal anatomy from undersampled and compressed measurements.
Deep neural networks have shown great potential for reconstructing high-quality images from highly undersampled measurements.
We propose a unified model that is robust to different subsampling patterns and image resolutions in CS-MRI.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - CT-SDM: A Sampling Diffusion Model for Sparse-View CT Reconstruction across All Sampling Rates [16.985836345715963]
Sparse views X-ray computed tomography has emerged as a contemporary technique to mitigate radiation dose degradation.
Recent studies utilizing deep learning methods has made promising progress in removing artifacts for Sparse-View Computed Tomography (SVCT)
Our study proposes a adaptive reconstruction method to achieve high-performance SVCT reconstruction at any sampling rate.
arXiv Detail & Related papers (2024-09-03T03:06:15Z) - CoCPF: Coordinate-based Continuous Projection Field for Ill-Posed Inverse Problem in Imaging [78.734927709231]
Sparse-view computed tomography (SVCT) reconstruction aims to acquire CT images based on sparsely-sampled measurements.
Due to ill-posedness, implicit neural representation (INR) techniques may leave considerable holes'' (i.e., unmodeled spaces) in their fields, leading to sub-optimal results.
We propose the Coordinate-based Continuous Projection Field (CoCPF), which aims to build hole-free representation fields for SVCT reconstruction.
arXiv Detail & Related papers (2024-06-21T08:38:30Z) - Rotational Augmented Noise2Inverse for Low-dose Computed Tomography
Reconstruction [83.73429628413773]
Supervised deep learning methods have shown the ability to remove noise in images but require accurate ground truth.
We propose a novel self-supervised framework for LDCT, in which ground truth is not required for training the convolutional neural network (CNN)
Numerical and experimental results show that the reconstruction accuracy of N2I with sparse views is degrading while the proposed rotational augmented Noise2Inverse (RAN2I) method keeps better image quality over a different range of sampling angles.
arXiv Detail & Related papers (2023-12-19T22:40:51Z) - Deep Cardiac MRI Reconstruction with ADMM [7.694990352622926]
We present a deep learning (DL)-based method for accelerated cine and multi-contrast reconstruction in the context of cardiac imaging.
Our method optimize in both the image and k-space domains, allowing for high reconstruction fidelity.
arXiv Detail & Related papers (2023-10-10T13:46:11Z) - APRF: Anti-Aliasing Projection Representation Field for Inverse Problem
in Imaging [74.9262846410559]
Sparse-view Computed Tomography (SVCT) reconstruction is an ill-posed inverse problem in imaging.
Recent works use Implicit Neural Representations (INRs) to build the coordinate-based mapping between sinograms and CT images.
We propose a self-supervised SVCT reconstruction method -- Anti-Aliasing Projection Representation Field (APRF)
APRF can build the continuous representation between adjacent projection views via the spatial constraints.
arXiv Detail & Related papers (2023-07-11T14:04:12Z) - Geometric Constraints Enable Self-Supervised Sinogram Inpainting in
Sparse-View Tomography [7.416898042520079]
Sparse-angle tomographic scans reduce radiation and accelerate data acquisition, but suffer from image artifacts and noise.
Existing image processing algorithms can restore CT reconstruction quality but often require large training data sets or can not be used for truncated objects.
This work presents a self-supervised projection inpainting method that allows optimizing missing projective views via gradient-based optimization.
arXiv Detail & Related papers (2023-02-13T15:15:18Z) - Self-Attention Generative Adversarial Network for Iterative
Reconstruction of CT Images [0.9208007322096533]
The aim of this study is to train a single neural network to reconstruct high-quality CT images from noisy or incomplete data.
The network includes a self-attention block to model long-range dependencies in the data.
Our approach is shown to have comparable overall performance to CIRCLE GAN, while outperforming the other two approaches.
arXiv Detail & Related papers (2021-12-23T19:20:38Z) - DuDoTrans: Dual-Domain Transformer Provides More Attention for Sinogram
Restoration in Sparse-View CT Reconstruction [13.358197688568463]
iodine radiation in the imaging process induces irreversible injury.
Iterative models are proposed to alleviate the appeared artifacts in sparse-view CT images, but the cost is too expensive.
We propose textbfDual-textbfDomain textbfDuDoTrans to reconstruct CT image with both the enhanced and raw sinograms.
arXiv Detail & Related papers (2021-11-21T10:41:07Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.