論文の概要: Pushing the Efficiency Limit Using Structured Sparse Convolutions
- arxiv url: http://arxiv.org/abs/2210.12818v1
- Date: Sun, 23 Oct 2022 18:37:22 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-25 17:28:53.204276
- Title: Pushing the Efficiency Limit Using Structured Sparse Convolutions
- Title(参考訳): 構造的スパース畳み込みによる効率限界の押し上げ
- Authors: Vinay Kumar Verma, Nikhil Mehta, Shijing Si, Ricardo Henao, Lawrence
Carin
- Abstract要約: 本稿では,画像の固有構造を利用して畳み込みフィルタのパラメータを削減する構造的スパース畳み込み(SSC)を提案する。
我々は、SSCが効率的なアーキテクチャにおける一般的なレイヤ(奥行き、グループ回り、ポイント回りの畳み込み)の一般化であることを示す。
SSCに基づくアーキテクチャは、CIFAR-10、CIFAR-100、Tiny-ImageNet、ImageNet分類ベンチマークのベースラインと比較して、最先端のパフォーマンスを実現している。
- 参考スコア(独自算出の注目度): 82.31130122200578
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Weight pruning is among the most popular approaches for compressing deep
convolutional neural networks. Recent work suggests that in a randomly
initialized deep neural network, there exist sparse subnetworks that achieve
performance comparable to the original network. Unfortunately, finding these
subnetworks involves iterative stages of training and pruning, which can be
computationally expensive. We propose Structured Sparse Convolution (SSC),
which leverages the inherent structure in images to reduce the parameters in
the convolutional filter. This leads to improved efficiency of convolutional
architectures compared to existing methods that perform pruning at
initialization. We show that SSC is a generalization of commonly used layers
(depthwise, groupwise and pointwise convolution) in ``efficient
architectures.'' Extensive experiments on well-known CNN models and datasets
show the effectiveness of the proposed method. Architectures based on SSC
achieve state-of-the-art performance compared to baselines on CIFAR-10,
CIFAR-100, Tiny-ImageNet, and ImageNet classification benchmarks.
- Abstract(参考訳): 重みの刈り取りは、深い畳み込みニューラルネットワークを圧縮する最も一般的な方法の1つである。
最近の研究は、ランダムに初期化されたディープニューラルネットワークでは、元のネットワークに匹敵するパフォーマンスを達成するスパースサブネットワークが存在することを示唆している。
残念ながら、これらのサブネットを見つけるには、トレーニングとプルーニングの反復的な段階が伴う。
本稿では,画像の固有構造を利用して畳み込みフィルタのパラメータを削減する構造的スパース畳み込み(SSC)を提案する。
これにより、初期化時にプルーニングを実行する既存の方法と比較して畳み込みアーキテクチャの効率が向上する。
SSC は ``効率的なアーキテクチャにおけるよく使われる層 (depthwise, groupwise, pointwise convolution) の一般化であることを示す。
有名なCNNモデルとデータセットの大規模な実験により,提案手法の有効性が示された。
SSCに基づくアーキテクチャは、CIFAR-10、CIFAR-100、Tiny-ImageNet、ImageNet分類ベンチマークのベースラインと比較して、最先端のパフォーマンスを達成する。
関連論文リスト
- Network Pruning Spaces [12.692532576302426]
ウェイトプルーニングやフィルタプルーニングなどのネットワークプルーニング技術により、ほとんどの最先端のニューラルネットワークは、大幅な性能低下なしに加速できることが明らかになった。
この研究は、市販のディープラーニングライブラリやハードウェアで推論を高速化するフィルタプルーニングに焦点を当てている。
論文 参考訳(メタデータ) (2023-04-19T06:52:05Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
画像超解像(SR)は、CNNからトランスフォーマーアーキテクチャへの広範なニューラルネットワーク設計を目撃している。
本研究は,市販のネットワーク設計を生かし,基礎となる計算オーバーヘッドを低減するため,超高解像度イテレーションにおけるネットワークプルーニングの可能性について検討する。
本研究では, ランダムネットワークのスパース構造を最適化し, 重要でない重みを小さめに微調整することにより, 反復型軟収縮率(ISS-P)法を提案する。
論文 参考訳(メタデータ) (2023-03-16T21:06:13Z) - FlowNAS: Neural Architecture Search for Optical Flow Estimation [65.44079917247369]
本研究では,フロー推定タスクにおいて,より優れたエンコーダアーキテクチャを自動で見つけるために,FlowNASというニューラルアーキテクチャ探索手法を提案する。
実験の結果、スーパーネットワークから受け継いだ重み付きアーキテクチャは、KITTI上で4.67%のF1-allエラーを達成していることがわかった。
論文 参考訳(メタデータ) (2022-07-04T09:05:25Z) - Pruning-as-Search: Efficient Neural Architecture Search via Channel
Pruning and Structural Reparameterization [50.50023451369742]
プルーニング・アズ・サーチ(Pruning-as-Search、PaS)は、必要なサブネットワークを自動的に効率的に検索するエンドツーエンドのプルーニング手法である。
提案したアーキテクチャは,ImageNet-1000分類タスクにおいて,1.0%$ Top-1精度で先行技術より優れていた。
論文 参考訳(メタデータ) (2022-06-02T17:58:54Z) - Keep the Gradients Flowing: Using Gradient Flow to Study Sparse Network
Optimization [16.85167651136133]
スパースネットワークのトレーニングについて、より広い視点で考察し、スパースモデルにおける正規化、最適化、アーキテクチャ選択の役割について考察する。
アーキテクチャ設計とトレーニング体制の側面を再考することにより,スパースネットワーク内の勾配流を改善することができることを示す。
論文 参考訳(メタデータ) (2021-02-02T18:40:26Z) - Structured Convolutions for Efficient Neural Network Design [65.36569572213027]
畳み込みニューラルネットワーク構築ブロックのテクスト単純構造における冗長性を利用してモデル効率に取り組む。
この分解が2Dカーネルや3Dカーネルだけでなく、完全に接続されたレイヤにも適用可能であることを示す。
論文 参考訳(メタデータ) (2020-08-06T04:38:38Z) - DC-NAS: Divide-and-Conquer Neural Architecture Search [108.57785531758076]
本稿では,ディープ・ニューラル・アーキテクチャーを効果的かつ効率的に探索するためのディバイド・アンド・コンカ(DC)手法を提案する。
ImageNetデータセットで75.1%の精度を達成しており、これは同じ検索空間を使った最先端の手法よりも高い。
論文 参考訳(メタデータ) (2020-05-29T09:02:16Z) - Knapsack Pruning with Inner Distillation [11.04321604965426]
そこで本研究では,プルーンドネットワークの最終精度を最適化する新しいプルーニング手法を提案する。
ネットワークの高レベル構造を維持しながら、ネットワークチャネルを熟考する。
提案手法は,ResNetバックボーンを用いたImageNet,CIFAR-10,CIFAR-100における最先端のプルーニング結果をもたらす。
論文 参考訳(メタデータ) (2020-02-19T16:04:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。