Optimal activity and battery scheduling algorithm using load and solar
generation forecasts
- URL: http://arxiv.org/abs/2210.12990v1
- Date: Mon, 24 Oct 2022 07:26:21 GMT
- Title: Optimal activity and battery scheduling algorithm using load and solar
generation forecasts
- Authors: Yogesh Pipada Sunil Kumar, Rui Yuan, Nam Trong Dinh and S. Ali
Pourmousavi
- Abstract summary: The 5textsuperscriptth IEEE Computational Intelligence Society (IEEE-CIS) competition raised a practical problem of decreasing the electricity bill by scheduling building activities.
We propose a technical sequence for tackling the solar PV and demand forecast and optimal scheduling problems, where solar generation prediction methods and an optimal university lectures scheduling algorithm are proposed.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Energy usage optimal scheduling has attracted great attention in the power
system community, where various methodologies have been proposed. However, in
real-world applications, the optimal scheduling problems require reliable
energy forecasting, which is scarcely discussed as a joint solution to the
scheduling problem. The 5\textsuperscript{th} IEEE Computational Intelligence
Society (IEEE-CIS) competition raised a practical problem of decreasing the
electricity bill by scheduling building activities, where forecasting the solar
energy generation and building consumption is a necessity. To solve this
problem, we propose a technical sequence for tackling the solar PV and demand
forecast and optimal scheduling problems, where solar generation prediction
methods and an optimal university lectures scheduling algorithm are proposed.
Related papers
- Energy-Efficient Scheduling with Predictions [4.662349748983561]
In energy-efficient scheduling, the operating system controls the speed at which a machine is processing jobs.
Recent work on learning-augmented algorithms aims to achieve improved performance guarantees by leveraging predictions.
We provide a flexible learning-augmented algorithmic framework that takes as input an offline and an online algorithm for the desired energy-efficient scheduling problem.
arXiv Detail & Related papers (2024-02-27T02:13:32Z) - Learning-assisted Stochastic Capacity Expansion Planning: A Bayesian Optimization Approach [3.124884279860061]
Large-scale capacity expansion problems (CEPs) are central to costeffective decarbonization of regional energy systems.
Here, we propose a learning-assisted approximate solution method to tractably solve two-stage CEPs.
We show that our approach yields an estimated cost savings of up to 3.8% in comparison to series aggregation approaches.
arXiv Detail & Related papers (2024-01-19T01:40:58Z) - Sustainable AIGC Workload Scheduling of Geo-Distributed Data Centers: A
Multi-Agent Reinforcement Learning Approach [48.18355658448509]
Recent breakthroughs in generative artificial intelligence have triggered a surge in demand for machine learning training, which poses significant cost burdens and environmental challenges due to its substantial energy consumption.
Scheduling training jobs among geographically distributed cloud data centers unveils the opportunity to optimize the usage of computing capacity powered by inexpensive and low-carbon energy.
We propose an algorithm based on multi-agent reinforcement learning and actor-critic methods to learn the optimal collaborative scheduling strategy through interacting with a cloud system built with real-life workload patterns, energy prices, and carbon intensities.
arXiv Detail & Related papers (2023-04-17T02:12:30Z) - Real-time scheduling of renewable power systems through planning-based
reinforcement learning [13.65517429683729]
renewable energy sources have posed significant challenges to traditional power scheduling.
New developments in reinforcement learning have demonstrated the potential to solve this problem.
We are the first to propose a systematic solution based on the state-of-the-art reinforcement learning algorithm and the real power grid environment.
arXiv Detail & Related papers (2023-03-09T12:19:20Z) - Comparison and Evaluation of Methods for a Predict+Optimize Problem in
Renewable Energy [42.00952788334554]
This paper presents the findings of the IEEE-CIS Technical Challenge on Predict+ for Renewable Energy Scheduling," held in 2021.
We present a comparison and evaluation of the seven highest-ranked solutions in the competition.
The winning method predicted different scenarios and optimized over all scenarios using a sample average approximation method.
arXiv Detail & Related papers (2022-12-21T02:34:12Z) - Movement Penalized Bayesian Optimization with Application to Wind Energy
Systems [84.7485307269572]
Contextual Bayesian optimization (CBO) is a powerful framework for sequential decision-making given side information.
In this setting, the learner receives context (e.g., weather conditions) at each round, and has to choose an action (e.g., turbine parameters)
Standard algorithms assume no cost for switching their decisions at every round, but in many practical applications, there is a cost associated with such changes, which should be minimized.
arXiv Detail & Related papers (2022-10-14T20:19:32Z) - Evolutionary scheduling of university activities based on consumption
forecasts to minimise electricity costs [0.9449650062296824]
This paper presents a solution to a predict then optimise problem which goal is to reduce the electricity cost of a university campus.
The proposed methodology combines a multi-dimensional time series forecast and a novel approach to large-scale optimization.
arXiv Detail & Related papers (2022-02-25T10:18:56Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z) - Demand-Side Scheduling Based on Multi-Agent Deep Actor-Critic Learning
for Smart Grids [56.35173057183362]
We consider the problem of demand-side energy management, where each household is equipped with a smart meter that is able to schedule home appliances online.
The goal is to minimize the overall cost under a real-time pricing scheme.
We propose the formulation of a smart grid environment as a Markov game.
arXiv Detail & Related papers (2020-05-05T07:32:40Z) - Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach [82.6692222294594]
We study a risk-aware energy scheduling problem for a microgrid-powered MEC network.
We derive the solution by applying a multi-agent deep reinforcement learning (MADRL)-based advantage actor-critic (A3C) algorithm with shared neural networks.
arXiv Detail & Related papers (2020-02-21T02:14:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.