Real-time scheduling of renewable power systems through planning-based
reinforcement learning
- URL: http://arxiv.org/abs/2303.05205v2
- Date: Mon, 13 Mar 2023 08:06:17 GMT
- Title: Real-time scheduling of renewable power systems through planning-based
reinforcement learning
- Authors: Shaohuai Liu, Jinbo Liu, Weirui Ye, Nan Yang, Guanglun Zhang, Haiwang
Zhong, Chongqing Kang, Qirong Jiang, Xuri Song, Fangchun Di, Yang Gao
- Abstract summary: renewable energy sources have posed significant challenges to traditional power scheduling.
New developments in reinforcement learning have demonstrated the potential to solve this problem.
We are the first to propose a systematic solution based on the state-of-the-art reinforcement learning algorithm and the real power grid environment.
- Score: 13.65517429683729
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The growing renewable energy sources have posed significant challenges to
traditional power scheduling. It is difficult for operators to obtain accurate
day-ahead forecasts of renewable generation, thereby requiring the future
scheduling system to make real-time scheduling decisions aligning with
ultra-short-term forecasts. Restricted by the computation speed, traditional
optimization-based methods can not solve this problem. Recent developments in
reinforcement learning (RL) have demonstrated the potential to solve this
challenge. However, the existing RL methods are inadequate in terms of
constraint complexity, algorithm performance, and environment fidelity. We are
the first to propose a systematic solution based on the state-of-the-art
reinforcement learning algorithm and the real power grid environment. The
proposed approach enables planning and finer time resolution adjustments of
power generators, including unit commitment and economic dispatch, thus
increasing the grid's ability to admit more renewable energy. The well-trained
scheduling agent significantly reduces renewable curtailment and load shedding,
which are issues arising from traditional scheduling's reliance on inaccurate
day-ahead forecasts. High-frequency control decisions exploit the existing
units' flexibility, reducing the power grid's dependence on hardware
transformations and saving investment and operating costs, as demonstrated in
experimental results. This research exhibits the potential of reinforcement
learning in promoting low-carbon and intelligent power systems and represents a
solid step toward sustainable electricity generation.
Related papers
- Accelerating Quasi-Static Time Series Simulations with Foundation Models [36.7183558293052]
We envision how recently introduced grid foundation models could improve the economic viability of neural power flow solvers.
We call for collaboration between the AI and power grid communities to develop and open-source these models.
arXiv Detail & Related papers (2024-11-13T14:42:32Z) - Optimizing Load Scheduling in Power Grids Using Reinforcement Learning and Markov Decision Processes [0.0]
This paper proposes a reinforcement learning (RL) approach to address the challenges of dynamic load scheduling.
Our results show that the RL-based method provides a robust and scalable solution for real-time load scheduling.
arXiv Detail & Related papers (2024-10-23T09:16:22Z) - Optimal Power Flow in Highly Renewable Power System Based on Attention
Neural Networks [43.19619268243832]
The integration of renewable energy sources, like wind and solar, poses challenges due to their inherent variability.
This variability, driven largely by changing weather conditions, demands frequent recalibrations of power settings.
We present a cutting-edge, physics-informed machine learning methodology, trained using imitation learning and historical European weather datasets.
arXiv Detail & Related papers (2023-11-23T12:02:58Z) - A Stochastic Online Forecast-and-Optimize Framework for Real-Time Energy
Dispatch in Virtual Power Plants under Uncertainty [18.485617498705736]
We propose a real-time uncertainty-aware energy dispatch framework, which is composed of two key elements.
The proposed framework is capable to rapidly adapt to the real-time data distribution, as well as to target on uncertainties caused by data drift, model discrepancy and environment perturbations in the control process.
The framework won the championship in CityLearn Challenge 2022, which provided an influential opportunity to investigate the potential of AI application in the energy domain.
arXiv Detail & Related papers (2023-09-15T00:04:00Z) - Sustainable AIGC Workload Scheduling of Geo-Distributed Data Centers: A
Multi-Agent Reinforcement Learning Approach [48.18355658448509]
Recent breakthroughs in generative artificial intelligence have triggered a surge in demand for machine learning training, which poses significant cost burdens and environmental challenges due to its substantial energy consumption.
Scheduling training jobs among geographically distributed cloud data centers unveils the opportunity to optimize the usage of computing capacity powered by inexpensive and low-carbon energy.
We propose an algorithm based on multi-agent reinforcement learning and actor-critic methods to learn the optimal collaborative scheduling strategy through interacting with a cloud system built with real-life workload patterns, energy prices, and carbon intensities.
arXiv Detail & Related papers (2023-04-17T02:12:30Z) - Distributed Energy Management and Demand Response in Smart Grids: A
Multi-Agent Deep Reinforcement Learning Framework [53.97223237572147]
This paper presents a multi-agent Deep Reinforcement Learning (DRL) framework for autonomous control and integration of renewable energy resources into smart power grid systems.
In particular, the proposed framework jointly considers demand response (DR) and distributed energy management (DEM) for residential end-users.
arXiv Detail & Related papers (2022-11-29T01:18:58Z) - Learning Optimization Proxies for Large-Scale Security-Constrained
Economic Dispatch [11.475805963049808]
Security-Constrained Economic Dispatch (SCED) is a fundamental optimization model for Transmission System Operators (TSO)
This paper proposes to learn an optimization proxy for SCED, i.e., a Machine Learning (ML) model that can predict an optimal solution for SCED in milliseconds.
Numerical experiments are reported on the French transmission system, and demonstrate the approach's ability to produce, within a time frame that is compatible with real-time operations.
arXiv Detail & Related papers (2021-12-27T00:44:06Z) - Deep Reinforcement Learning Based Multidimensional Resource Management
for Energy Harvesting Cognitive NOMA Communications [64.1076645382049]
Combination of energy harvesting (EH), cognitive radio (CR), and non-orthogonal multiple access (NOMA) is a promising solution to improve energy efficiency.
In this paper, we study the spectrum, energy, and time resource management for deterministic-CR-NOMA IoT systems.
arXiv Detail & Related papers (2021-09-17T08:55:48Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z) - Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach [82.6692222294594]
We study a risk-aware energy scheduling problem for a microgrid-powered MEC network.
We derive the solution by applying a multi-agent deep reinforcement learning (MADRL)-based advantage actor-critic (A3C) algorithm with shared neural networks.
arXiv Detail & Related papers (2020-02-21T02:14:38Z) - Data-driven control of micro-climate in buildings: an event-triggered
reinforcement learning approach [56.22460188003505]
We formulate the micro-climate control problem based on semi-Markov decision processes.
We propose two learning algorithms for event-triggered control of micro-climate in buildings.
We show the efficacy of our proposed approach via designing a smart learning thermostat.
arXiv Detail & Related papers (2020-01-28T18:20:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.