Federated Learning and Meta Learning: Approaches, Applications, and
Directions
- URL: http://arxiv.org/abs/2210.13111v2
- Date: Sat, 4 Nov 2023 21:25:55 GMT
- Title: Federated Learning and Meta Learning: Approaches, Applications, and
Directions
- Authors: Xiaonan Liu and Yansha Deng and Arumugam Nallanathan and Mehdi Bennis
- Abstract summary: In this tutorial, we present a comprehensive review of FL, meta learning, and federated meta learning (FedMeta)
Unlike other tutorial papers, our objective is to explore how FL, meta learning, and FedMeta methodologies can be designed, optimized, and evolved, and their applications over wireless networks.
- Score: 94.68423258028285
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Over the past few years, significant advancements have been made in the field
of machine learning (ML) to address resource management, interference
management, autonomy, and decision-making in wireless networks. Traditional ML
approaches rely on centralized methods, where data is collected at a central
server for training. However, this approach poses a challenge in terms of
preserving the data privacy of devices. To address this issue, federated
learning (FL) has emerged as an effective solution that allows edge devices to
collaboratively train ML models without compromising data privacy. In FL, local
datasets are not shared, and the focus is on learning a global model for a
specific task involving all devices. However, FL has limitations when it comes
to adapting the model to devices with different data distributions. In such
cases, meta learning is considered, as it enables the adaptation of learning
models to different data distributions using only a few data samples. In this
tutorial, we present a comprehensive review of FL, meta learning, and federated
meta learning (FedMeta). Unlike other tutorial papers, our objective is to
explore how FL, meta learning, and FedMeta methodologies can be designed,
optimized, and evolved, and their applications over wireless networks. We also
analyze the relationships among these learning algorithms and examine their
advantages and disadvantages in real-world applications.
Related papers
- MultiConfederated Learning: Inclusive Non-IID Data handling with Decentralized Federated Learning [1.2726316791083532]
Federated Learning (FL) has emerged as a prominent privacy-preserving technique for enabling use cases like confidential clinical machine learning.
FL operates by aggregating models trained by remote devices which owns the data.
We propose MultiConfederated Learning: a decentralized FL framework which is designed to handle non-IID data.
arXiv Detail & Related papers (2024-04-20T16:38:26Z) - Federated Fine-Tuning of LLMs on the Very Edge: The Good, the Bad, the Ugly [62.473245910234304]
This paper takes a hardware-centric approach to explore how Large Language Models can be brought to modern edge computing systems.
We provide a micro-level hardware benchmark, compare the model FLOP utilization to a state-of-the-art data center GPU, and study the network utilization in realistic conditions.
arXiv Detail & Related papers (2023-10-04T20:27:20Z) - Online Data Selection for Federated Learning with Limited Storage [53.46789303416799]
Federated Learning (FL) has been proposed to achieve distributed machine learning among networked devices.
The impact of on-device storage on the performance of FL is still not explored.
In this work, we take the first step to consider the online data selection for FL with limited on-device storage.
arXiv Detail & Related papers (2022-09-01T03:27:33Z) - Applied Federated Learning: Architectural Design for Robust and
Efficient Learning in Privacy Aware Settings [0.8454446648908585]
The classical machine learning paradigm requires the aggregation of user data in a central location.
Centralization of data poses risks, including a heightened risk of internal and external security incidents.
Federated learning with differential privacy is designed to avoid the server-side centralization pitfall.
arXiv Detail & Related papers (2022-06-02T00:30:04Z) - Parallel Successive Learning for Dynamic Distributed Model Training over
Heterogeneous Wireless Networks [50.68446003616802]
Federated learning (FedL) has emerged as a popular technique for distributing model training over a set of wireless devices.
We develop parallel successive learning (PSL), which expands the FedL architecture along three dimensions.
Our analysis sheds light on the notion of cold vs. warmed up models, and model inertia in distributed machine learning.
arXiv Detail & Related papers (2022-02-07T05:11:01Z) - PMFL: Partial Meta-Federated Learning for heterogeneous tasks and its
applications on real-world medical records [11.252157002705484]
Federated machine learning is a versatile and flexible tool to utilize distributed data from different sources.
We propose a new algorithm, which is an integration of federated learning and meta-learning, to tackle this issue.
We show that our algorithm could obtain the fastest training speed and achieve the best performance when dealing with heterogeneous medical datasets.
arXiv Detail & Related papers (2021-12-10T03:55:03Z) - Mobility-Aware Cluster Federated Learning in Hierarchical Wireless
Networks [81.83990083088345]
We develop a theoretical model to characterize the hierarchical federated learning (HFL) algorithm in wireless networks.
Our analysis proves that the learning performance of HFL deteriorates drastically with highly-mobile users.
To circumvent these issues, we propose a mobility-aware cluster federated learning (MACFL) algorithm.
arXiv Detail & Related papers (2021-08-20T10:46:58Z) - Federated Few-Shot Learning with Adversarial Learning [30.905239262227]
We propose a few-shot learning framework to learn a few-shot classification model that can classify unseen data classes with only a few labeled samples.
We show our approaches outperform baselines by more than 10% in learning vision tasks and 5% in language tasks.
arXiv Detail & Related papers (2021-04-01T09:44:57Z) - Wireless Communications for Collaborative Federated Learning [160.82696473996566]
Internet of Things (IoT) devices may not be able to transmit their collected data to a central controller for training machine learning models.
Google's seminal FL algorithm requires all devices to be directly connected with a central controller.
This paper introduces a novel FL framework, called collaborative FL (CFL), which enables edge devices to implement FL with less reliance on a central controller.
arXiv Detail & Related papers (2020-06-03T20:00:02Z) - Evaluating the Communication Efficiency in Federated Learning Algorithms [3.713348568329249]
Recently, in light of new privacy legislations in many countries, the concept of Federated Learning (FL) has been introduced.
In FL, mobile users are empowered to learn a global model by aggregating their local models, without sharing the privacy-sensitive data.
This raises the challenge of communication cost when implementing FL at large scale.
arXiv Detail & Related papers (2020-04-06T15:31:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.