MultiConfederated Learning: Inclusive Non-IID Data handling with Decentralized Federated Learning
- URL: http://arxiv.org/abs/2404.13421v1
- Date: Sat, 20 Apr 2024 16:38:26 GMT
- Title: MultiConfederated Learning: Inclusive Non-IID Data handling with Decentralized Federated Learning
- Authors: Michael Duchesne, Kaiwen Zhang, Chamseddine Talhi,
- Abstract summary: Federated Learning (FL) has emerged as a prominent privacy-preserving technique for enabling use cases like confidential clinical machine learning.
FL operates by aggregating models trained by remote devices which owns the data.
We propose MultiConfederated Learning: a decentralized FL framework which is designed to handle non-IID data.
- Score: 1.2726316791083532
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) has emerged as a prominent privacy-preserving technique for enabling use cases like confidential clinical machine learning. FL operates by aggregating models trained by remote devices which owns the data. Thus, FL enables the training of powerful global models using crowd-sourced data from a large number of learners, without compromising their privacy. However, the aggregating server is a single point of failure when generating the global model. Moreover, the performance of the model suffers when the data is not independent and identically distributed (non-IID data) on all remote devices. This leads to vastly different models being aggregated, which can reduce the performance by as much as 50% in certain scenarios. In this paper, we seek to address the aforementioned issues while retaining the benefits of FL. We propose MultiConfederated Learning: a decentralized FL framework which is designed to handle non-IID data. Unlike traditional FL, MultiConfederated Learning will maintain multiple models in parallel (instead of a single global model) to help with convergence when the data is non-IID. With the help of transfer learning, learners can converge to fewer models. In order to increase adaptability, learners are allowed to choose which updates to aggregate from their peers.
Related papers
- Update Selective Parameters: Federated Machine Unlearning Based on Model Explanation [46.86767774669831]
We propose a more effective and efficient federated unlearning scheme based on the concept of model explanation.
We select the most influential channels within an already-trained model for the data that need to be unlearned.
arXiv Detail & Related papers (2024-06-18T11:43:20Z) - Tunable Soft Prompts are Messengers in Federated Learning [55.924749085481544]
Federated learning (FL) enables multiple participants to collaboratively train machine learning models using decentralized data sources.
The lack of model privacy protection in FL becomes an unneglectable challenge.
We propose a novel FL training approach that accomplishes information exchange among participants via tunable soft prompts.
arXiv Detail & Related papers (2023-11-12T11:01:10Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
Federated learning (FL) and Split Learning (SL) are two frameworks that enable collaborative learning while keeping the data private (on device)
In FL, each data holder trains a model locally and releases it to a central server for aggregation.
In SL, the clients must release individual cut-layer activations (smashed data) to the server and wait for its response (during both inference and back propagation).
In this work, we present a novel approach for privacy-preserving machine learning, where the clients collaborate via online knowledge distillation using a contrastive loss.
arXiv Detail & Related papers (2022-11-20T10:49:22Z) - Federated Learning and Meta Learning: Approaches, Applications, and
Directions [94.68423258028285]
In this tutorial, we present a comprehensive review of FL, meta learning, and federated meta learning (FedMeta)
Unlike other tutorial papers, our objective is to explore how FL, meta learning, and FedMeta methodologies can be designed, optimized, and evolved, and their applications over wireless networks.
arXiv Detail & Related papers (2022-10-24T10:59:29Z) - FEDIC: Federated Learning on Non-IID and Long-Tailed Data via Calibrated
Distillation [54.2658887073461]
Dealing with non-IID data is one of the most challenging problems for federated learning.
This paper studies the joint problem of non-IID and long-tailed data in federated learning and proposes a corresponding solution called Federated Ensemble Distillation with Imbalance (FEDIC)
FEDIC uses model ensemble to take advantage of the diversity of models trained on non-IID data.
arXiv Detail & Related papers (2022-04-30T06:17:36Z) - Multi-Center Federated Learning [62.32725938999433]
Federated learning (FL) can protect data privacy in distributed learning.
It merely collects local gradients from users without access to their data.
We propose a novel multi-center aggregation mechanism.
arXiv Detail & Related papers (2021-08-19T12:20:31Z) - FLaPS: Federated Learning and Privately Scaling [3.618133010429131]
Federated learning (FL) is a distributed learning process where the model is transferred to the devices that posses data.
We present Federated Learning and Privately Scaling (FLaPS) architecture, which improves scalability as well as the security and privacy of the system.
arXiv Detail & Related papers (2020-09-13T14:20:17Z) - Multi-Center Federated Learning [62.57229809407692]
This paper proposes a novel multi-center aggregation mechanism for federated learning.
It learns multiple global models from the non-IID user data and simultaneously derives the optimal matching between users and centers.
Our experimental results on benchmark datasets show that our method outperforms several popular federated learning methods.
arXiv Detail & Related papers (2020-05-03T09:14:31Z) - Federated learning with hierarchical clustering of local updates to
improve training on non-IID data [3.3517146652431378]
We show that learning a single joint model is often not optimal in the presence of certain types of non-iid data.
We present a modification to FL by introducing a hierarchical clustering step (FL+HC)
We show how FL+HC allows model training to converge in fewer communication rounds compared to FL without clustering.
arXiv Detail & Related papers (2020-04-24T15:16:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.