Transformers over Directed Acyclic Graphs
- URL: http://arxiv.org/abs/2210.13148v6
- Date: Mon, 30 Oct 2023 17:33:43 GMT
- Title: Transformers over Directed Acyclic Graphs
- Authors: Yuankai Luo, Veronika Thost, Lei Shi
- Abstract summary: We study transformers over directed acyclic graphs (DAGs) and propose architecture adaptations tailored to DAGs.
We show that it is effective in making graph transformers generally outperform graph neural networks tailored to DAGs and in improving SOTA graph transformer performance in terms of both quality and efficiency.
- Score: 6.263470141349622
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transformer models have recently gained popularity in graph representation
learning as they have the potential to learn complex relationships beyond the
ones captured by regular graph neural networks. The main research question is
how to inject the structural bias of graphs into the transformer architecture,
and several proposals have been made for undirected molecular graphs and,
recently, also for larger network graphs. In this paper, we study transformers
over directed acyclic graphs (DAGs) and propose architecture adaptations
tailored to DAGs: (1) An attention mechanism that is considerably more
efficient than the regular quadratic complexity of transformers and at the same
time faithfully captures the DAG structure, and (2) a positional encoding of
the DAG's partial order, complementing the former. We rigorously evaluate our
approach over various types of tasks, ranging from classifying source code
graphs to nodes in citation networks, and show that it is effective in two
important aspects: in making graph transformers generally outperform graph
neural networks tailored to DAGs and in improving SOTA graph transformer
performance in terms of both quality and efficiency.
Related papers
- SGFormer: Single-Layer Graph Transformers with Approximation-Free Linear Complexity [74.51827323742506]
We evaluate the necessity of adopting multi-layer attentions in Transformers on graphs.
We show that one-layer propagation can be reduced to one-layer propagation, with the same capability for representation learning.
It suggests a new technical path for building powerful and efficient Transformers on graphs.
arXiv Detail & Related papers (2024-09-13T17:37:34Z) - Automatic Graph Topology-Aware Transformer [50.2807041149784]
We build a comprehensive graph Transformer search space with the micro-level and macro-level designs.
EGTAS evolves graph Transformer topologies at the macro level and graph-aware strategies at the micro level.
We demonstrate the efficacy of EGTAS across a range of graph-level and node-level tasks.
arXiv Detail & Related papers (2024-05-30T07:44:31Z) - Technical Report: The Graph Spectral Token -- Enhancing Graph Transformers with Spectral Information [0.8184895397419141]
Graph Transformers have emerged as a powerful alternative to Message-Passing Graph Neural Networks (MP-GNNs)
We propose the Graph Spectral Token, a novel approach to directly encode graph spectral information.
We benchmark the effectiveness of our approach by enhancing two existing graph transformers, GraphTrans and SubFormer.
arXiv Detail & Related papers (2024-04-08T15:24:20Z) - Topology-Informed Graph Transformer [7.857955053895979]
'Topology-Informed Graph Transformer (TIGT)' is a novel transformer enhancing both discriminative power in detecting graph isomorphisms and the overall performance of Graph Transformers.
TIGT consists of four components: A topological positional embedding layer using non-isomorphic universal covers based on cyclic subgraphs of graphs to ensure unique graph representation.
TIGT outperforms previous Graph Transformers in classifying synthetic dataset aimed at distinguishing isomorphism classes of graphs.
arXiv Detail & Related papers (2024-02-03T03:17:44Z) - Graph Transformers without Positional Encodings [0.7252027234425334]
We introduce Eigenformer, a Graph Transformer employing a novel spectrum-aware attention mechanism cognizant of the Laplacian spectrum of the graph.
We empirically show that it achieves performance competetive with SOTA Graph Transformers on a number of standard GNN benchmarks.
arXiv Detail & Related papers (2024-01-31T12:33:31Z) - Deep Prompt Tuning for Graph Transformers [55.2480439325792]
Fine-tuning is resource-intensive and requires storing multiple copies of large models.
We propose a novel approach called deep graph prompt tuning as an alternative to fine-tuning.
By freezing the pre-trained parameters and only updating the added tokens, our approach reduces the number of free parameters and eliminates the need for multiple model copies.
arXiv Detail & Related papers (2023-09-18T20:12:17Z) - SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations [75.71298846760303]
We show that a one-layer attention can bring up surprisingly competitive performance across node property prediction benchmarks.
We frame the proposed scheme as Simplified Graph Transformers (SGFormer), which is empowered by a simple attention model.
We believe the proposed methodology alone enlightens a new technical path of independent interest for building Transformers on large graphs.
arXiv Detail & Related papers (2023-06-19T08:03:25Z) - Deformable Graph Transformer [31.254872949603982]
We propose Deformable Graph Transformer (DGT) that performs sparse attention with dynamically sampled key and value pairs.
Experiments demonstrate that our novel graph Transformer consistently outperforms existing Transformer-based models.
arXiv Detail & Related papers (2022-06-29T00:23:25Z) - Transformer for Graphs: An Overview from Architecture Perspective [86.3545861392215]
It's imperative to sort out the existing Transformer models for graphs and systematically investigate their effectiveness on various graph tasks.
We first disassemble the existing models and conclude three typical ways to incorporate the graph information into the vanilla Transformer.
Our experiments confirm the benefits of current graph-specific modules on Transformer and reveal their advantages on different kinds of graph tasks.
arXiv Detail & Related papers (2022-02-17T06:02:06Z) - Do Transformers Really Perform Bad for Graph Representation? [62.68420868623308]
We present Graphormer, which is built upon the standard Transformer architecture.
Our key insight to utilizing Transformer in the graph is the necessity of effectively encoding the structural information of a graph into the model.
arXiv Detail & Related papers (2021-06-09T17:18:52Z) - A Generalization of Transformer Networks to Graphs [5.736353542430439]
We introduce a graph transformer with four new properties compared to the standard model.
The architecture is extended to edge feature representation, which can be critical to tasks s.a. chemistry (bond type) or link prediction (entity relationship in knowledge graphs)
arXiv Detail & Related papers (2020-12-17T16:11:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.