Technical Report: The Graph Spectral Token -- Enhancing Graph Transformers with Spectral Information
- URL: http://arxiv.org/abs/2404.05604v1
- Date: Mon, 8 Apr 2024 15:24:20 GMT
- Title: Technical Report: The Graph Spectral Token -- Enhancing Graph Transformers with Spectral Information
- Authors: Zihan Pengmei, Zimu Li,
- Abstract summary: Graph Transformers have emerged as a powerful alternative to Message-Passing Graph Neural Networks (MP-GNNs)
We propose the Graph Spectral Token, a novel approach to directly encode graph spectral information.
We benchmark the effectiveness of our approach by enhancing two existing graph transformers, GraphTrans and SubFormer.
- Score: 0.8184895397419141
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Transformers have emerged as a powerful alternative to Message-Passing Graph Neural Networks (MP-GNNs) to address limitations such as over-squashing of information exchange. However, incorporating graph inductive bias into transformer architectures remains a significant challenge. In this report, we propose the Graph Spectral Token, a novel approach to directly encode graph spectral information, which captures the global structure of the graph, into the transformer architecture. By parameterizing the auxiliary [CLS] token and leaving other tokens representing graph nodes, our method seamlessly integrates spectral information into the learning process. We benchmark the effectiveness of our approach by enhancing two existing graph transformers, GraphTrans and SubFormer. The improved GraphTrans, dubbed GraphTrans-Spec, achieves over 10% improvements on large graph benchmark datasets while maintaining efficiency comparable to MP-GNNs. SubFormer-Spec demonstrates strong performance across various datasets.
Related papers
- Graph Transformers without Positional Encodings [0.7252027234425334]
We introduce Eigenformer, a Graph Transformer employing a novel spectrum-aware attention mechanism cognizant of the Laplacian spectrum of the graph.
We empirically show that it achieves performance competetive with SOTA Graph Transformers on a number of standard GNN benchmarks.
arXiv Detail & Related papers (2024-01-31T12:33:31Z) - Through the Dual-Prism: A Spectral Perspective on Graph Data
Augmentation for Graph Classification [71.36575018271405]
We introduce the Dual-Prism (DP) augmentation method, comprising DP-Noise and DP-Mask.
We find that keeping the low-frequency eigenvalues unchanged can preserve the critical properties at a large scale when generating augmented graphs.
arXiv Detail & Related papers (2024-01-18T12:58:53Z) - Deep Prompt Tuning for Graph Transformers [55.2480439325792]
Fine-tuning is resource-intensive and requires storing multiple copies of large models.
We propose a novel approach called deep graph prompt tuning as an alternative to fine-tuning.
By freezing the pre-trained parameters and only updating the added tokens, our approach reduces the number of free parameters and eliminates the need for multiple model copies.
arXiv Detail & Related papers (2023-09-18T20:12:17Z) - Graph Propagation Transformer for Graph Representation Learning [36.01189696668657]
We propose a new attention mechanism called Graph Propagation Attention (GPA)
It explicitly passes the information among nodes and edges in three ways, i.e. node-to-node, node-to-edge, and edge-to-node.
We show that our method outperforms many state-of-the-art transformer-based graph models with better performance.
arXiv Detail & Related papers (2023-05-19T04:42:58Z) - Diffusing Graph Attention [15.013509382069046]
We develop a new model for Graph Transformers that integrates the arbitrary graph structure into the architecture.
GD learns to extract structural and positional relationships between distant nodes in the graph, which it then uses to direct the Transformer's attention and node representation.
Experiments on eight benchmarks show Graph diffuser to be a highly competitive model, outperforming the state-of-the-art in a diverse set of domains.
arXiv Detail & Related papers (2023-03-01T16:11:05Z) - Are More Layers Beneficial to Graph Transformers? [97.05661983225603]
Current graph transformers suffer from the bottleneck of improving performance by increasing depth.
Deep graph transformers are limited by the vanishing capacity of global attention.
We propose a novel graph transformer model named DeepGraph that explicitly employs substructure tokens in the encoded representation.
arXiv Detail & Related papers (2023-03-01T15:22:40Z) - Transformers over Directed Acyclic Graphs [6.263470141349622]
We study transformers over directed acyclic graphs (DAGs) and propose architecture adaptations tailored to DAGs.
We show that it is effective in making graph transformers generally outperform graph neural networks tailored to DAGs and in improving SOTA graph transformer performance in terms of both quality and efficiency.
arXiv Detail & Related papers (2022-10-24T12:04:52Z) - Pure Transformers are Powerful Graph Learners [51.36884247453605]
We show that standard Transformers without graph-specific modifications can lead to promising results in graph learning both in theory and practice.
We prove that this approach is theoretically at least as expressive as an invariant graph network (2-IGN) composed of equivariant linear layers.
Our method coined Tokenized Graph Transformer (TokenGT) achieves significantly better results compared to GNN baselines and competitive results.
arXiv Detail & Related papers (2022-07-06T08:13:06Z) - Spectral Graph Convolutional Networks With Lifting-based Adaptive Graph
Wavelets [81.63035727821145]
Spectral graph convolutional networks (SGCNs) have been attracting increasing attention in graph representation learning.
We propose a novel class of spectral graph convolutional networks that implement graph convolutions with adaptive graph wavelets.
arXiv Detail & Related papers (2021-08-03T17:57:53Z) - Do Transformers Really Perform Bad for Graph Representation? [62.68420868623308]
We present Graphormer, which is built upon the standard Transformer architecture.
Our key insight to utilizing Transformer in the graph is the necessity of effectively encoding the structural information of a graph into the model.
arXiv Detail & Related papers (2021-06-09T17:18:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.