論文の概要: Applying Autonomous Hybrid Agent-based Computing to Difficult
Optimization Problems
- arxiv url: http://arxiv.org/abs/2210.13205v1
- Date: Mon, 24 Oct 2022 13:28:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-25 15:06:56.464009
- Title: Applying Autonomous Hybrid Agent-based Computing to Difficult
Optimization Problems
- Title(参考訳): 自律型ハイブリッドエージェントベースコンピューティングの最適化問題への応用
- Authors: Mateusz Godzik, Jacek Dajda, Marek Kisiel-Dorohinicki, Aleksander
Byrski, Leszek Rutkowski, Patryk Orzechowski, Joost Wagenaar, Jason H. Moore
- Abstract要約: 本稿では,EMASのハイブリッドバージョンを提案する。
これには、複数のハイブリッド演算子の選択と導入、およびメインアルゴリズムのハイブリッドステップを開始するためのルールの定義が含まれる。
これらのハイブリッドステップは、既存の、よく知られた、そして証明された、効率的なメタヒューリスティックスを活用し、その結果をメインのアルゴリズムに統合する。
- 参考スコア(独自算出の注目度): 56.821213236215634
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Evolutionary multi-agent systems (EMASs) are very good at dealing with
difficult, multi-dimensional problems, their efficacy was proven theoretically
based on analysis of the relevant Markov-Chain based model. Now the research
continues on introducing autonomous hybridization into EMAS. This paper focuses
on a proposed hybrid version of the EMAS, and covers selection and introduction
of a number of hybrid operators and defining rules for starting the hybrid
steps of the main algorithm. Those hybrid steps leverage existing, well-known
and proven to be efficient metaheuristics, and integrate their results into the
main algorithm. The discussed modifications are evaluated based on a number of
difficult continuous-optimization benchmarks.
- Abstract(参考訳): 進化的マルチエージェントシステム(EMAS)は困難で多次元的な問題を扱うのに非常に適しており、その有効性はマルコフ-チェインモデルの解析に基づいて理論的に証明された。
現在、EMASに自律的ハイブリッド化を導入する研究が続けられている。
本稿では,EMASのハイブリッドバージョンを提案するとともに,複数のハイブリッド演算子の選択と導入,および本アルゴリズムのハイブリッドステップを開始するためのルールの定義について述べる。
これらのハイブリッドステップは、既存のよく知られた、効率的なメタヒューリスティックスを活用し、結果をメインアルゴリズムに統合する。
議論された修正は、多くの難しい連続最適化ベンチマークに基づいて評価される。
関連論文リスト
- LLaMA-Berry: Pairwise Optimization for O1-like Olympiad-Level Mathematical Reasoning [56.273799410256075]
このフレームワークはMonte Carlo Tree Search (MCTS)と反復的なSelf-Refineを組み合わせて推論パスを最適化する。
このフレームワークは、一般的なベンチマークと高度なベンチマークでテストされており、探索効率と問題解決能力の点で優れた性能を示している。
論文 参考訳(メタデータ) (2024-10-03T18:12:29Z) - AI-Empowered Hybrid MIMO Beamforming [85.48860461696417]
ハイブリッドマルチインプット・マルチアウトプット(MIMO)システムは、アナログおよびデジタルのビームフォーミングの一部を実装している。
近年、ハイブリッドビームフォーミング設計にデータ支援人工知能(AI)ツールを使うことへの関心が高まっている。
本稿では、リアルタイムハイブリッドビームフォーミング設計を改善するために、データを活用するための候補戦略についてレビューする。
論文 参考訳(メタデータ) (2023-03-03T06:04:20Z) - Multi-surrogate Assisted Efficient Global Optimization for Discrete
Problems [0.9127162004615265]
本稿では、離散的な問題を解くために、複数のシミュレーションベースの代理モデルの同時利用の可能性について検討する。
以上の結果から,SAMA-DiEGOはテスト問題の大部分において,より優れた解に迅速に収束できることが示唆された。
論文 参考訳(メタデータ) (2022-12-13T09:10:08Z) - Relational Reasoning via Set Transformers: Provable Efficiency and
Applications to MARL [154.13105285663656]
置換不変エージェントフレームワークを用いたMARL(Multi-A gent R einforcement Learning)は,実世界のアプリケーションにおいて大きな実証的成功を収めた。
残念なことに、このMARL問題の理論的理解は、多くのエージェントの呪いと、既存の著作における関係推論の限定的な探索によって欠落している。
モデルフリーアルゴリズムとモデルベースアルゴリズムの最適度差は各エージェント数に独立して対数的であり、多くのエージェントの呪いを和らげる。
論文 参考訳(メタデータ) (2022-09-20T16:42:59Z) - SMT-based Weighted Model Integration with Structure Awareness [18.615397594541665]
本研究では,SMTに基づく列挙法と問題構造を効果的に符号化するアルゴリズムを開発した。
これにより,冗長モデルの生成を回避し,計算コストを大幅に削減できる。
論文 参考訳(メタデータ) (2022-06-28T09:46:17Z) - A survey on multi-objective hyperparameter optimization algorithms for
Machine Learning [62.997667081978825]
本稿では,多目的HPOアルゴリズムに関する2014年から2020年にかけての文献を体系的に調査する。
メタヒューリスティック・ベース・アルゴリズムとメタモデル・ベース・アルゴリズム,および両者を混合したアプローチを区別する。
また,多目的HPO法と今後の研究方向性を比較するための品質指標についても論じる。
論文 参考訳(メタデータ) (2021-11-23T10:22:30Z) - Chaos inspired Particle Swarm Optimization with Levy Flight for Genome
Sequence Assembly [0.0]
本稿では、置換最適化問題に対処するため、新しいPSOの変種を提案する。
PSOはChaos and Levy Flight (ランダムウォークアルゴリズム)と統合され、アルゴリズムの探索と利用能力のバランスをとる。
論文で提案する他のPSOの変種と比較して,提案手法の性能を評価するための実証実験を行った。
論文 参考訳(メタデータ) (2021-10-20T15:24:27Z) - Hybrid Henry Gas Solubility Optimization Algorithm with Dynamic
Cluster-to-Algorithm Mapping for Search-based Software Engineering Problems [1.0323063834827413]
本稿ではHenry Gas Solubility Optimization(HGSO)アルゴリズムの新しい変種であるHGSO(Hybrid HGSO)について述べる。
前者とは異なり、HHGSOは異なるメタヒューリスティックアルゴリズムを提供する複数のクラスタを同じ集団内で共存させることができる。
HHGSOは、適応的な切替係数を持つペナル化および報酬モデルによる動的クラスタ-アルゴリズムマッピングを発明し、メタヒューリスティックなハイブリダイゼーションのための新しいアプローチを提供する。
論文 参考訳(メタデータ) (2021-05-31T12:42:15Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
バイレベル最適化は多くの機械学習問題に対するツールである。
Stoc-BiO という新しい確率効率勾配推定器を提案する。
論文 参考訳(メタデータ) (2020-10-15T18:09:48Z) - Hybrid Adaptive Evolutionary Algorithm for Multi-objective Optimization [0.0]
本稿では、MoHAEAと呼ばれるハイブリッド適応進化アルゴリズム(HAEA)の拡張として、新しい多目的アルゴリズムを提案する。
MoHAEAは、MOEA/D、pa$lambda$-MOEA/D、MOEA/D-AWA、NSGA-IIの4つの状態と比較される。
論文 参考訳(メタデータ) (2020-04-29T02:16:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。