論文の概要: A Continuous Convolutional Trainable Filter for Modelling Unstructured
Data
- arxiv url: http://arxiv.org/abs/2210.13416v3
- Date: Thu, 25 May 2023 09:08:40 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-26 23:45:19.533018
- Title: A Continuous Convolutional Trainable Filter for Modelling Unstructured
Data
- Title(参考訳): 非構造データモデリングのための連続畳み込み学習型フィルタ
- Authors: Dario Coscia, Laura Meneghetti, Nicola Demo, Giovanni Stabile,
Gianluigi Rozza
- Abstract要約: トレーニング可能な畳み込みフィルタの連続バージョンを提案する。
実験の結果,連続フィルタは最先端の離散フィルタに匹敵する精度を達成できることがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Convolutional Neural Network (CNN) is one of the most important architectures
in deep learning. The fundamental building block of a CNN is a trainable
filter, represented as a discrete grid, used to perform convolution on discrete
input data. In this work, we propose a continuous version of a trainable
convolutional filter able to work also with unstructured data. This new
framework allows exploring CNNs beyond discrete domains, enlarging the usage of
this important learning technique for many more complex problems. Our
experiments show that the continuous filter can achieve a level of accuracy
comparable to the state-of-the-art discrete filter, and that it can be used in
current deep learning architectures as a building block to solve problems with
unstructured domains as well.
- Abstract(参考訳): 畳み込みニューラルネットワーク(CNN)はディープラーニングにおいて最も重要なアーキテクチャの一つである。
cnnの基本構成ブロックは、離散グリッドとして表現され、離散入力データで畳み込みを実行するために使用される訓練可能なフィルタである。
本研究では,非構造化データでも動作可能なトレーニング可能な畳み込みフィルタの連続バージョンを提案する。
この新しいフレームワークは、多くの複雑な問題に対するこの重要な学習テクニックの使用を拡大し、個別のドメインを越えてcnnを探索することを可能にする。
実験により,連続フィルタは最先端の離散フィルタに匹敵する精度を実現でき,非構造化領域の問題を解決するためのビルディングブロックとして,現在のディープラーニングアーキテクチャで使用できることを示した。
関連論文リスト
- PICNN: A Pathway towards Interpretable Convolutional Neural Networks [12.31424771480963]
フィルタと画像のクラス間の絡み合いを軽減する新しい経路を導入する。
我々はBernoulliサンプリングを用いて、学習可能なフィルタクラス対応行列からフィルタクラスタ割り当て行列を生成する。
提案手法の有効性を,広く使用されている10のネットワークアーキテクチャ上で評価する。
論文 参考訳(メタデータ) (2023-12-19T11:36:03Z) - As large as it gets: Learning infinitely large Filters via Neural Implicit Functions in the Fourier Domain [22.512062422338914]
画像分類のためのニューラルネットワークの最近の研究は、空間的文脈を増大させる傾向が強い。
本稿では,畳み込みニューラルネットワークの有効フィルタサイズを研究するためのモジュールを提案する。
提案するネットワークは非常に大きな畳み込みカーネルを学習できるが、学習されたフィルタは十分に局所化されており、実際は比較的小さい。
論文 参考訳(メタデータ) (2023-07-19T14:21:11Z) - What Can Be Learnt With Wide Convolutional Neural Networks? [69.55323565255631]
カーネルシステムにおける無限大の深層CNNについて検討する。
我々は,深部CNNが対象関数の空間スケールに適応していることを証明する。
我々は、別の深部CNNの出力に基づいて訓練された深部CNNの一般化誤差を計算して結論付ける。
論文 参考訳(メタデータ) (2022-08-01T17:19:32Z) - Towards a General Purpose CNN for Long Range Dependencies in
$\mathrm{N}$D [49.57261544331683]
構造変化のない任意の解像度,次元,長さのタスクに対して,連続的な畳み込みカーネルを備えた単一CNNアーキテクチャを提案する。
1$mathrmD$)とビジュアルデータ(2$mathrmD$)の幅広いタスクに同じCCNNを適用することで、我々のアプローチの汎用性を示す。
私たちのCCNNは競争力があり、検討されたすべてのタスクで現在の最先端を上回ります。
論文 参考訳(メタデータ) (2022-06-07T15:48:02Z) - CNN Filter DB: An Empirical Investigation of Trained Convolutional
Filters [2.0305676256390934]
モデル事前学習は、サイズと分散条件を満たす場合、任意のデータセットで成功することを示す。
事前学習された多くのモデルには、劣化したフィルタが含まれており、それによって、より堅牢で、ターゲットアプリケーションの微調整に適さないことが示される。
論文 参考訳(メタデータ) (2022-03-29T08:25:42Z) - FILTRA: Rethinking Steerable CNN by Filter Transform [59.412570807426135]
操舵可能なCNNの問題は群表現論の側面から研究されている。
フィルタ変換によって構築されたカーネルは群表現論でも解釈可能であることを示す。
この解釈は、ステアブルCNN理論のパズルを完成させ、ステアブル畳み込み演算子を実装するための、新しく簡単なアプローチを提供する。
論文 参考訳(メタデータ) (2021-05-25T03:32:34Z) - Graph Neural Networks with Adaptive Frequency Response Filter [55.626174910206046]
適応周波数応答フィルタを用いたグラフニューラルネットワークフレームワークAdaGNNを開発した。
提案手法の有効性を,様々なベンチマークデータセット上で実証的に検証した。
論文 参考訳(メタデータ) (2021-04-26T19:31:21Z) - Deep Parametric Continuous Convolutional Neural Networks [92.87547731907176]
Parametric Continuous Convolutionは、非グリッド構造化データ上で動作する、新たな学習可能な演算子である。
室内および屋外シーンの点雲セグメンテーションにおける最先端技術よりも顕著な改善が見られた。
論文 参考訳(メタデータ) (2021-01-17T18:28:23Z) - Training Interpretable Convolutional Neural Networks by Differentiating
Class-specific Filters [64.46270549587004]
畳み込みニューラルネットワーク(CNN)は、様々なタスクでうまく使われている。
CNNは、しばしば「ブラックボックス」と解釈可能性の欠如とみなされる。
本稿では,クラス固有のフィルタを奨励することで,解釈可能なCNNを訓練する新しい手法を提案する。
論文 参考訳(メタデータ) (2020-07-16T09:12:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。