Adaptive Top-K in SGD for Communication-Efficient Distributed Learning
- URL: http://arxiv.org/abs/2210.13532v2
- Date: Mon, 11 Sep 2023 14:37:33 GMT
- Title: Adaptive Top-K in SGD for Communication-Efficient Distributed Learning
- Authors: Mengzhe Ruan, Guangfeng Yan, Yuanzhang Xiao, Linqi Song, Weitao Xu
- Abstract summary: This paper proposes a novel adaptive Top-K in SGD framework that enables an adaptive degree of sparsification for each gradient descent step to optimize the convergence performance.
numerical results on the MNIST and CIFAR-10 datasets demonstrate that the proposed adaptive Top-K algorithm in SGD achieves a significantly better convergence rate compared to state-of-the-art methods.
- Score: 14.867068493072885
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Distributed stochastic gradient descent (SGD) with gradient compression has
become a popular communication-efficient solution for accelerating distributed
learning. One commonly used method for gradient compression is Top-K
sparsification, which sparsifies the gradients by a fixed degree during model
training. However, there has been a lack of an adaptive approach to adjust the
sparsification degree to maximize the potential of the model's performance or
training speed. This paper proposes a novel adaptive Top-K in SGD framework
that enables an adaptive degree of sparsification for each gradient descent
step to optimize the convergence performance by balancing the trade-off between
communication cost and convergence error. Firstly, an upper bound of
convergence error is derived for the adaptive sparsification scheme and the
loss function. Secondly, an algorithm is designed to minimize the convergence
error under the communication cost constraints. Finally, numerical results on
the MNIST and CIFAR-10 datasets demonstrate that the proposed adaptive Top-K
algorithm in SGD achieves a significantly better convergence rate compared to
state-of-the-art methods, even after considering error compensation.
Related papers
- Flattened one-bit stochastic gradient descent: compressed distributed optimization with controlled variance [55.01966743652196]
We propose a novel algorithm for distributed gradient descent (SGD) with compressed gradient communication in the parameter-server framework.
Our gradient compression technique, named flattened one-bit gradient descent (FO-SGD), relies on two simple algorithmic ideas.
arXiv Detail & Related papers (2024-05-17T21:17:27Z) - Adaptive Federated Learning Over the Air [108.62635460744109]
We propose a federated version of adaptive gradient methods, particularly AdaGrad and Adam, within the framework of over-the-air model training.
Our analysis shows that the AdaGrad-based training algorithm converges to a stationary point at the rate of $mathcalO( ln(T) / T 1 - frac1alpha ).
arXiv Detail & Related papers (2024-03-11T09:10:37Z) - Fundamental Limits of Communication Efficiency for Model Aggregation in
Distributed Learning: A Rate-Distortion Approach [54.311495894129585]
We study the limit of communication cost of model aggregation in distributed learning from a rate-distortion perspective.
It is found that the communication gain by exploiting the correlation between worker nodes is significant for SignSGD.
arXiv Detail & Related papers (2022-06-28T13:10:40Z) - Communication-Compressed Adaptive Gradient Method for Distributed
Nonconvex Optimization [21.81192774458227]
One of the major bottlenecks is the large communication cost between the central server and the local workers.
Our proposed distributed learning framework features an effective gradient gradient compression strategy.
arXiv Detail & Related papers (2021-11-01T04:54:55Z) - Cogradient Descent for Dependable Learning [64.02052988844301]
We propose a dependable learning based on Cogradient Descent (CoGD) algorithm to address the bilinear optimization problem.
CoGD is introduced to solve bilinear problems when one variable is with sparsity constraint.
It can also be used to decompose the association of features and weights, which further generalizes our method to better train convolutional neural networks (CNNs)
arXiv Detail & Related papers (2021-06-20T04:28:20Z) - A Distributed Training Algorithm of Generative Adversarial Networks with
Quantized Gradients [8.202072658184166]
We propose a distributed GANs training algorithm with quantized gradient, dubbed DQGAN, which is the first distributed training method with quantized gradient for GANs.
The new method trains GANs based on a specific single machine algorithm called Optimistic Mirror Descent (OMD) algorithm, and is applicable to any gradient compression method that satisfies a general $delta$-approximate compressor.
Theoretically, we establish the non-asymptotic convergence of DQGAN algorithm to first-order stationary point, which shows that the proposed algorithm can achieve a linear speedup in the
arXiv Detail & Related papers (2020-10-26T06:06:43Z) - Cogradient Descent for Bilinear Optimization [124.45816011848096]
We introduce a Cogradient Descent algorithm (CoGD) to address the bilinear problem.
We solve one variable by considering its coupling relationship with the other, leading to a synchronous gradient descent.
Our algorithm is applied to solve problems with one variable under the sparsity constraint.
arXiv Detail & Related papers (2020-06-16T13:41:54Z) - Detached Error Feedback for Distributed SGD with Random Sparsification [98.98236187442258]
Communication bottleneck has been a critical problem in large-scale deep learning.
We propose a new distributed error feedback (DEF) algorithm, which shows better convergence than error feedback for non-efficient distributed problems.
We also propose DEFA to accelerate the generalization of DEF, which shows better bounds than DEF.
arXiv Detail & Related papers (2020-04-11T03:50:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.