Depth Monocular Estimation with Attention-based Encoder-Decoder Network
from Single Image
- URL: http://arxiv.org/abs/2210.13646v1
- Date: Mon, 24 Oct 2022 23:01:25 GMT
- Title: Depth Monocular Estimation with Attention-based Encoder-Decoder Network
from Single Image
- Authors: Xin Zhang and Rabab Abdelfattah and Yuqi Song and Samuel A. Dauchert
and Xiaofeng wang
- Abstract summary: Vision-based approaches have recently received much attention and can overcome these drawbacks.
In this work, we explore an extreme scenario in vision-based settings: estimate a depth map from one monocular image severely plagued by grid artifacts and blurry edges.
Our novel approach can find the focus of current image with minimal overhead and avoid losses of depth features.
- Score: 7.753378095194288
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Depth information is the foundation of perception, essential for autonomous
driving, robotics, and other source-constrained applications. Promptly
obtaining accurate and efficient depth information allows for a rapid response
in dynamic environments. Sensor-based methods using LIDAR and RADAR obtain high
precision at the cost of high power consumption, price, and volume. While due
to advances in deep learning, vision-based approaches have recently received
much attention and can overcome these drawbacks. In this work, we explore an
extreme scenario in vision-based settings: estimate a depth map from one
monocular image severely plagued by grid artifacts and blurry edges. To address
this scenario, We first design a convolutional attention mechanism block (CAMB)
which consists of channel attention and spatial attention sequentially and
insert these CAMBs into skip connections. As a result, our novel approach can
find the focus of current image with minimal overhead and avoid losses of depth
features. Next, by combining the depth value, the gradients of X axis, Y axis
and diagonal directions, and the structural similarity index measure (SSIM), we
propose our novel loss function. Moreover, we utilize pixel blocks to
accelerate the computation of the loss function. Finally, we show, through
comprehensive experiments on two large-scale image datasets, i.e. KITTI and
NYU-V2, that our method outperforms several representative baselines.
Related papers
- Exploring Deep Learning Image Super-Resolution for Iris Recognition [50.43429968821899]
We propose the use of two deep learning single-image super-resolution approaches: Stacked Auto-Encoders (SAE) and Convolutional Neural Networks (CNN)
We validate the methods with a database of 1.872 near-infrared iris images with quality assessment and recognition experiments showing the superiority of deep learning approaches over the compared algorithms.
arXiv Detail & Related papers (2023-11-02T13:57:48Z) - Lightweight Monocular Depth Estimation with an Edge Guided Network [34.03711454383413]
We present a novel lightweight Edge Guided Depth Estimation Network (EGD-Net)
In particular, we start out with a lightweight encoder-decoder architecture and embed an edge guidance branch.
In order to aggregate the context information and edge attention features, we design a transformer-based feature aggregation module.
arXiv Detail & Related papers (2022-09-29T14:45:47Z) - Visual Attention-based Self-supervised Absolute Depth Estimation using
Geometric Priors in Autonomous Driving [8.045833295463094]
We introduce a fully Visual Attention-based Depth (VADepth) network, where spatial attention and channel attention are applied to all stages.
By continuously extracting the dependencies of features along the spatial and channel dimensions over a long distance, VADepth network can effectively preserve important details.
Experimental results on the KITTI dataset show that this architecture achieves the state-of-the-art performance.
arXiv Detail & Related papers (2022-05-18T08:01:38Z) - End-to-end Learning for Joint Depth and Image Reconstruction from
Diffracted Rotation [10.896567381206715]
We propose a novel end-to-end learning approach for depth from diffracted rotation.
Our approach requires a significantly less complex model and less training data, yet it is superior to existing methods in the task of monocular depth estimation.
arXiv Detail & Related papers (2022-04-14T16:14:37Z) - High-resolution Depth Maps Imaging via Attention-based Hierarchical
Multi-modal Fusion [84.24973877109181]
We propose a novel attention-based hierarchical multi-modal fusion network for guided DSR.
We show that our approach outperforms state-of-the-art methods in terms of reconstruction accuracy, running speed and memory efficiency.
arXiv Detail & Related papers (2021-04-04T03:28:33Z) - Sparse Auxiliary Networks for Unified Monocular Depth Prediction and
Completion [56.85837052421469]
Estimating scene geometry from data obtained with cost-effective sensors is key for robots and self-driving cars.
In this paper, we study the problem of predicting dense depth from a single RGB image with optional sparse measurements from low-cost active depth sensors.
We introduce Sparse Networks (SANs), a new module enabling monodepth networks to perform both the tasks of depth prediction and completion.
arXiv Detail & Related papers (2021-03-30T21:22:26Z) - PLADE-Net: Towards Pixel-Level Accuracy for Self-Supervised Single-View
Depth Estimation with Neural Positional Encoding and Distilled Matting Loss [49.66736599668501]
We propose a self-supervised single-view pixel-level accurate depth estimation network, called PLADE-Net.
Our method shows unprecedented accuracy levels, exceeding 95% in terms of the $delta1$ metric on the KITTI dataset.
arXiv Detail & Related papers (2021-03-12T15:54:46Z) - On Deep Learning Techniques to Boost Monocular Depth Estimation for
Autonomous Navigation [1.9007546108571112]
Inferring the depth of images is a fundamental inverse problem within the field of Computer Vision.
We propose a new lightweight and fast supervised CNN architecture combined with novel feature extraction models.
We also introduce an efficient surface normals module, jointly with a simple geometric 2.5D loss function, to solve SIDE problems.
arXiv Detail & Related papers (2020-10-13T18:37:38Z) - Accurate RGB-D Salient Object Detection via Collaborative Learning [101.82654054191443]
RGB-D saliency detection shows impressive ability on some challenge scenarios.
We propose a novel collaborative learning framework where edge, depth and saliency are leveraged in a more efficient way.
arXiv Detail & Related papers (2020-07-23T04:33:36Z) - Defocus Blur Detection via Depth Distillation [64.78779830554731]
We introduce depth information into DBD for the first time.
In detail, we learn the defocus blur from ground truth and the depth distilled from a well-trained depth estimation network.
Our approach outperforms 11 other state-of-the-art methods on two popular datasets.
arXiv Detail & Related papers (2020-07-16T04:58:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.