Exploring Deep Learning Image Super-Resolution for Iris Recognition
- URL: http://arxiv.org/abs/2311.01241v1
- Date: Thu, 2 Nov 2023 13:57:48 GMT
- Title: Exploring Deep Learning Image Super-Resolution for Iris Recognition
- Authors: Eduardo Ribeiro, Andreas Uhl, Fernando Alonso-Fernandez, Reuben A.
Farrugia
- Abstract summary: We propose the use of two deep learning single-image super-resolution approaches: Stacked Auto-Encoders (SAE) and Convolutional Neural Networks (CNN)
We validate the methods with a database of 1.872 near-infrared iris images with quality assessment and recognition experiments showing the superiority of deep learning approaches over the compared algorithms.
- Score: 50.43429968821899
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work we test the ability of deep learning methods to provide an
end-to-end mapping between low and high resolution images applying it to the
iris recognition problem. Here, we propose the use of two deep learning
single-image super-resolution approaches: Stacked Auto-Encoders (SAE) and
Convolutional Neural Networks (CNN) with the most possible lightweight
structure to achieve fast speed, preserve local information and reduce
artifacts at the same time. We validate the methods with a database of 1.872
near-infrared iris images with quality assessment and recognition experiments
showing the superiority of deep learning approaches over the compared
algorithms.
Related papers
- An Enhanced Low-Resolution Image Recognition Method for Traffic
Environments [3.018656336329545]
Low-resolution images suffer from small size, low quality, and lack of detail, leading to a decrease in the accuracy of traditional neural network recognition algorithms.
This paper introduces a dual-branch residual network structure that leverages the basic architecture of residual networks and a common feature subspace algorithm.
It incorporates the utilization of intermediate-layer features to enhance the accuracy of low-resolution image recognition.
arXiv Detail & Related papers (2023-09-28T12:38:31Z) - One-stage Low-resolution Text Recognition with High-resolution Knowledge
Transfer [53.02254290682613]
Current solutions for low-resolution text recognition typically rely on a two-stage pipeline.
We propose an efficient and effective knowledge distillation framework to achieve multi-level knowledge transfer.
Experiments show that the proposed one-stage pipeline significantly outperforms super-resolution based two-stage frameworks.
arXiv Detail & Related papers (2023-08-05T02:33:45Z) - Cross-resolution Face Recognition via Identity-Preserving Network and
Knowledge Distillation [12.090322373964124]
Cross-resolution face recognition is a challenging problem for modern deep face recognition systems.
This paper proposes a new approach that enforces the network to focus on the discriminative information stored in the low-frequency components of a low-resolution image.
arXiv Detail & Related papers (2023-03-15T14:52:46Z) - Iris super-resolution using CNNs: is photo-realism important to iris
recognition? [67.42500312968455]
Single image super-resolution techniques are emerging, especially with the use of convolutional neural networks (CNNs)
In this work, the authors explore single image super-resolution using CNNs for iris recognition.
They validate their approach on a database of 1.872 near infrared iris images and on a mobile phone image database.
arXiv Detail & Related papers (2022-10-24T11:19:18Z) - Super-Resolution and Image Re-projection for Iris Recognition [67.42500312968455]
Convolutional Neural Networks (CNNs) using different deep learning approaches attempt to recover realistic texture and fine grained details from low resolution images.
In this work we explore the viability of these approaches for iris Super-Resolution (SR) in an iris recognition environment.
Results show that CNNs and image re-projection can improve the results specially for the accuracy of recognition systems.
arXiv Detail & Related papers (2022-10-20T09:46:23Z) - Very Low-Resolution Iris Recognition Via Eigen-Patch Super-Resolution
and Matcher Fusion [69.53542497693086]
We evaluate a super-resolution algorithm used to reconstruct iris images based on Eigen-transformation of local image patches.
Contrast enhancement is used to improve the reconstruction quality, while matcher fusion has been adopted to improve iris recognition performance.
arXiv Detail & Related papers (2022-10-18T11:25:19Z) - Homography augumented momentum constrastive learning for SAR image
retrieval [3.9743795764085545]
We propose a deep learning-based image retrieval approach using homography transformation augmented contrastive learning.
We also propose a training method for the DNNs induced by contrastive learning that does not require any labeling procedure.
arXiv Detail & Related papers (2021-09-21T17:27:07Z) - Towards Unpaired Depth Enhancement and Super-Resolution in the Wild [121.96527719530305]
State-of-the-art data-driven methods of depth map super-resolution rely on registered pairs of low- and high-resolution depth maps of the same scenes.
We consider an approach to depth map enhancement based on learning from unpaired data.
arXiv Detail & Related papers (2021-05-25T16:19:16Z) - Multimodal Deep Unfolding for Guided Image Super-Resolution [23.48305854574444]
Deep learning methods rely on training data to learn an end-to-end mapping from a low-resolution input to a high-resolution output.
We propose a multimodal deep learning design that incorporates sparse priors and allows the effective integration of information from another image modality into the network architecture.
Our solution relies on a novel deep unfolding operator, performing steps similar to an iterative algorithm for convolutional sparse coding with side information.
arXiv Detail & Related papers (2020-01-21T14:41:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.