DeXtreme: Transfer of Agile In-hand Manipulation from Simulation to
Reality
- URL: http://arxiv.org/abs/2210.13702v2
- Date: Tue, 2 Jan 2024 22:33:42 GMT
- Title: DeXtreme: Transfer of Agile In-hand Manipulation from Simulation to
Reality
- Authors: Ankur Handa, Arthur Allshire, Viktor Makoviychuk, Aleksei Petrenko,
Ritvik Singh, Jingzhou Liu, Denys Makoviichuk, Karl Van Wyk, Alexander
Zhurkevich, Balakumar Sundaralingam, Yashraj Narang, Jean-Francois Lafleche,
Dieter Fox, Gavriel State
- Abstract summary: We train a policy that can perform robust dexterous manipulation on an anthropomorphic robot hand.
Our work reaffirms the possibilities of sim-to-real transfer for dexterous manipulation in diverse kinds of hardware and simulator setups.
- Score: 64.51295032956118
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent work has demonstrated the ability of deep reinforcement learning (RL)
algorithms to learn complex robotic behaviours in simulation, including in the
domain of multi-fingered manipulation. However, such models can be challenging
to transfer to the real world due to the gap between simulation and reality. In
this paper, we present our techniques to train a) a policy that can perform
robust dexterous manipulation on an anthropomorphic robot hand and b) a robust
pose estimator suitable for providing reliable real-time information on the
state of the object being manipulated. Our policies are trained to adapt to a
wide range of conditions in simulation. Consequently, our vision-based policies
significantly outperform the best vision policies in the literature on the same
reorientation task and are competitive with policies that are given privileged
state information via motion capture systems. Our work reaffirms the
possibilities of sim-to-real transfer for dexterous manipulation in diverse
kinds of hardware and simulator setups, and in our case, with the Allegro Hand
and Isaac Gym GPU-based simulation. Furthermore, it opens up possibilities for
researchers to achieve such results with commonly-available, affordable robot
hands and cameras. Videos of the resulting policy and supplementary
information, including experiments and demos, can be found at
https://dextreme.org/
Related papers
- TRANSIC: Sim-to-Real Policy Transfer by Learning from Online Correction [25.36756787147331]
Learning in simulation and transferring the learned policy to the real world has the potential to enable generalist robots.
We propose a data-driven approach to enable successful sim-to-real transfer based on a human-in-the-loop framework.
We show that our approach can achieve successful sim-to-real transfer in complex and contact-rich manipulation tasks such as furniture assembly.
arXiv Detail & Related papers (2024-05-16T17:59:07Z) - Learning Interactive Real-World Simulators [96.5991333400566]
We explore the possibility of learning a universal simulator of real-world interaction through generative modeling.
We use the simulator to train both high-level vision-language policies and low-level reinforcement learning policies.
Video captioning models can benefit from training with simulated experience, opening up even wider applications.
arXiv Detail & Related papers (2023-10-09T19:42:22Z) - Robust Visual Sim-to-Real Transfer for Robotic Manipulation [79.66851068682779]
Learning visuomotor policies in simulation is much safer and cheaper than in the real world.
However, due to discrepancies between the simulated and real data, simulator-trained policies often fail when transferred to real robots.
One common approach to bridge the visual sim-to-real domain gap is domain randomization (DR)
arXiv Detail & Related papers (2023-07-28T05:47:24Z) - Residual Physics Learning and System Identification for Sim-to-real
Transfer of Policies on Buoyancy Assisted Legged Robots [14.760426243769308]
In this work, we demonstrate robust sim-to-real transfer of control policies on the BALLU robots via system identification.
Rather than relying on standard supervised learning formulations, we utilize deep reinforcement learning to train an external force policy.
We analyze the improved simulation fidelity by comparing the simulation trajectories against the real-world ones.
arXiv Detail & Related papers (2023-03-16T18:49:05Z) - Accelerating Interactive Human-like Manipulation Learning with GPU-based
Simulation and High-quality Demonstrations [25.393382192511716]
We present an immersive virtual reality teleoperation interface designed for interactive human-like manipulation on contact rich tasks.
We demonstrate the complementary strengths of massively parallel RL and imitation learning, yielding robust and natural behaviors.
arXiv Detail & Related papers (2022-12-05T09:37:27Z) - VISTA 2.0: An Open, Data-driven Simulator for Multimodal Sensing and
Policy Learning for Autonomous Vehicles [131.2240621036954]
We present VISTA, an open source, data-driven simulator that integrates multiple types of sensors for autonomous vehicles.
Using high fidelity, real-world datasets, VISTA represents and simulates RGB cameras, 3D LiDAR, and event-based cameras.
We demonstrate the ability to train and test perception-to-control policies across each of the sensor types and showcase the power of this approach via deployment on a full scale autonomous vehicle.
arXiv Detail & Related papers (2021-11-23T18:58:10Z) - TrafficSim: Learning to Simulate Realistic Multi-Agent Behaviors [74.67698916175614]
We propose TrafficSim, a multi-agent behavior model for realistic traffic simulation.
In particular, we leverage an implicit latent variable model to parameterize a joint actor policy.
We show TrafficSim generates significantly more realistic and diverse traffic scenarios as compared to a diverse set of baselines.
arXiv Detail & Related papers (2021-01-17T00:29:30Z) - Point Cloud Based Reinforcement Learning for Sim-to-Real and Partial
Observability in Visual Navigation [62.22058066456076]
Reinforcement Learning (RL) represents powerful tools to solve complex robotic tasks.
RL does not work directly in the real-world, which is known as the sim-to-real transfer problem.
We propose a method that learns on an observation space constructed by point clouds and environment randomization.
arXiv Detail & Related papers (2020-07-27T17:46:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.