Real-is-Sim: Bridging the Sim-to-Real Gap with a Dynamic Digital Twin for Real-World Robot Policy Evaluation
- URL: http://arxiv.org/abs/2504.03597v1
- Date: Fri, 04 Apr 2025 17:05:56 GMT
- Title: Real-is-Sim: Bridging the Sim-to-Real Gap with a Dynamic Digital Twin for Real-World Robot Policy Evaluation
- Authors: Jad Abou-Chakra, Lingfeng Sun, Krishan Rana, Brandon May, Karl Schmeckpeper, Maria Vittoria Minniti, Laura Herlant,
- Abstract summary: We propose real-is-sim, a behavior cloning framework that incorporates a dynamic digital twin throughout the policy development pipeline.<n>We validate real-is-sim on the PushT manipulation task, demonstrating strong correlation between success rates obtained in the simulator and real-world evaluations.
- Score: 8.36634439225698
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in behavior cloning have enabled robots to perform complex manipulation tasks. However, accurately assessing training performance remains challenging, particularly for real-world applications, as behavior cloning losses often correlate poorly with actual task success. Consequently, researchers resort to success rate metrics derived from costly and time-consuming real-world evaluations, making the identification of optimal policies and detection of overfitting or underfitting impractical. To address these issues, we propose real-is-sim, a novel behavior cloning framework that incorporates a dynamic digital twin (based on Embodied Gaussians) throughout the entire policy development pipeline: data collection, training, and deployment. By continuously aligning the simulated world with the physical world, demonstrations can be collected in the real world with states extracted from the simulator. The simulator enables flexible state representations by rendering image inputs from any viewpoint or extracting low-level state information from objects embodied within the scene. During training, policies can be directly evaluated within the simulator in an offline and highly parallelizable manner. Finally, during deployment, policies are run within the simulator where the real robot directly tracks the simulated robot's joints, effectively decoupling policy execution from real hardware and mitigating traditional domain-transfer challenges. We validate real-is-sim on the PushT manipulation task, demonstrating strong correlation between success rates obtained in the simulator and real-world evaluations. Videos of our system can be found at https://realissim.rai-inst.com.
Related papers
- X-Sim: Cross-Embodiment Learning via Real-to-Sim-to-Real [13.644777529832291]
X-Sim is a real-to-sim-to-real framework that uses object motion as a dense and transferable signal for learning robot policies.<n>X-Sim starts by reconstructing a simulation from an RGBD human video and tracking object trajectories to define object-centric rewards.<n>The learned policy is then distilled into an image-conditioned diffusion policy using synthetic rollouts rendered with varied viewpoints and lighting.
arXiv Detail & Related papers (2025-05-11T19:04:00Z) - Empirical Analysis of Sim-and-Real Cotraining Of Diffusion Policies For Planar Pushing from Pixels [18.858676073824515]
Cotraining with demonstration data generated both in simulation and on real hardware has emerged as a powerful recipe to overcome the sim2real gap.<n>Performance gains scale with simulated data, but eventually plateau; real-world data increases this performance ceiling.<n>Perhaps surprisingly, having some visual domain gap actually helps the cotrained policy -- binary probes reveal that high-performing policies learn to distinguish simulated domains from real.
arXiv Detail & Related papers (2025-03-28T17:25:57Z) - Dynamics as Prompts: In-Context Learning for Sim-to-Real System Identifications [23.94013806312391]
We propose a novel approach that dynamically adjusts simulation environment parameters online using in-context learning.<n>We validate our approach across two tasks: object scooping and table air hockey.<n>Our approach delivers efficient and smooth system identification, advancing the deployment of robots in dynamic real-world scenarios.
arXiv Detail & Related papers (2024-10-27T07:13:38Z) - Overcoming the Sim-to-Real Gap: Leveraging Simulation to Learn to Explore for Real-World RL [25.991354823569033]
We show that in many regimes, while direct sim2real transfer may fail, we can utilize the simulator to learn a set of emphexploratory policies.
In particular, in the setting of low-rank MDPs, we show that coupling these exploratory policies with simple, practical approaches.
This is the first evidence that simulation transfer yields a provable gain in reinforcement learning in settings where direct sim2real transfer fails.
arXiv Detail & Related papers (2024-10-26T19:12:27Z) - EAGERx: Graph-Based Framework for Sim2real Robot Learning [9.145895178276822]
Sim2real, that is, the transfer of learned control policies from simulation to real world, is an area of growing interest in robotics.
We introduce EAGERx, a framework with a unified software pipeline for both real and simulated robot learning.
arXiv Detail & Related papers (2024-07-05T08:01:19Z) - TRANSIC: Sim-to-Real Policy Transfer by Learning from Online Correction [25.36756787147331]
Learning in simulation and transferring the learned policy to the real world has the potential to enable generalist robots.
We propose a data-driven approach to enable successful sim-to-real transfer based on a human-in-the-loop framework.
We show that our approach can achieve successful sim-to-real transfer in complex and contact-rich manipulation tasks such as furniture assembly.
arXiv Detail & Related papers (2024-05-16T17:59:07Z) - Evaluating Real-World Robot Manipulation Policies in Simulation [91.55267186958892]
Control and visual disparities between real and simulated environments are key challenges for reliable simulated evaluation.
We propose approaches for mitigating these gaps without needing to craft full-fidelity digital twins of real-world environments.
We create SIMPLER, a collection of simulated environments for manipulation policy evaluation on common real robot setups.
arXiv Detail & Related papers (2024-05-09T17:30:16Z) - Learning Interactive Real-World Simulators [96.5991333400566]
We explore the possibility of learning a universal simulator of real-world interaction through generative modeling.
We use the simulator to train both high-level vision-language policies and low-level reinforcement learning policies.
Video captioning models can benefit from training with simulated experience, opening up even wider applications.
arXiv Detail & Related papers (2023-10-09T19:42:22Z) - Robust Visual Sim-to-Real Transfer for Robotic Manipulation [79.66851068682779]
Learning visuomotor policies in simulation is much safer and cheaper than in the real world.
However, due to discrepancies between the simulated and real data, simulator-trained policies often fail when transferred to real robots.
One common approach to bridge the visual sim-to-real domain gap is domain randomization (DR)
arXiv Detail & Related papers (2023-07-28T05:47:24Z) - Sim-to-Real via Sim-to-Seg: End-to-end Off-road Autonomous Driving
Without Real Data [56.49494318285391]
We present Sim2Seg, a re-imagining of RCAN that crosses the visual reality gap for off-road autonomous driving.
This is done by learning to translate randomized simulation images into simulated segmentation and depth maps.
This allows us to train an end-to-end RL policy in simulation, and directly deploy in the real-world.
arXiv Detail & Related papers (2022-10-25T17:50:36Z) - DeXtreme: Transfer of Agile In-hand Manipulation from Simulation to
Reality [64.51295032956118]
We train a policy that can perform robust dexterous manipulation on an anthropomorphic robot hand.
Our work reaffirms the possibilities of sim-to-real transfer for dexterous manipulation in diverse kinds of hardware and simulator setups.
arXiv Detail & Related papers (2022-10-25T01:51:36Z) - Practical Imitation Learning in the Real World via Task Consistency Loss [18.827979446629296]
This paper introduces a self-supervised loss that encourages sim and real alignment both at the feature and action-prediction levels.
We achieve 80% success across ten seen and unseen scenes using only 16.2 hours of teleoperated demonstrations in sim and real.
arXiv Detail & Related papers (2022-02-03T21:43:06Z) - TrafficSim: Learning to Simulate Realistic Multi-Agent Behaviors [74.67698916175614]
We propose TrafficSim, a multi-agent behavior model for realistic traffic simulation.
In particular, we leverage an implicit latent variable model to parameterize a joint actor policy.
We show TrafficSim generates significantly more realistic and diverse traffic scenarios as compared to a diverse set of baselines.
arXiv Detail & Related papers (2021-01-17T00:29:30Z) - Reactive Long Horizon Task Execution via Visual Skill and Precondition
Models [59.76233967614774]
We describe an approach for sim-to-real training that can accomplish unseen robotic tasks using models learned in simulation to ground components of a simple task planner.
We show an increase in success rate from 91.6% to 98% in simulation and from 10% to 80% success rate in the real-world as compared with naive baselines.
arXiv Detail & Related papers (2020-11-17T15:24:01Z) - Point Cloud Based Reinforcement Learning for Sim-to-Real and Partial
Observability in Visual Navigation [62.22058066456076]
Reinforcement Learning (RL) represents powerful tools to solve complex robotic tasks.
RL does not work directly in the real-world, which is known as the sim-to-real transfer problem.
We propose a method that learns on an observation space constructed by point clouds and environment randomization.
arXiv Detail & Related papers (2020-07-27T17:46:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.