Microwave-optical double resonance in a erbium-doped
whispering-gallery-mode resonator
- URL: http://arxiv.org/abs/2210.13793v1
- Date: Tue, 25 Oct 2022 06:56:14 GMT
- Title: Microwave-optical double resonance in a erbium-doped
whispering-gallery-mode resonator
- Authors: Li Ma, Luke S. Trainor, Gavin G. G. King, Harald G. L. Schwefel, Jevon
J. Longdell
- Abstract summary: We showcase an erbium-doped whispering-gallery-mode resonator with optical modes that display intrinsic quality factors better than $108$ (linewidths less than 2 MHz)
Our optical cavity sits inside a microwave resonator, allowing us to probe the spin transition which is tuned by an external magnetic field.
- Score: 1.9610940437927111
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We showcase an erbium-doped whispering-gallery-mode resonator with optical
modes that display intrinsic quality factors better than $10^8$ (linewidths
less than 2 MHz), and coupling strengths to collective erbium transitions of up
to 2$\pi\times$1.2 GHz - enough to reach the ensemble strong coupling regime.
Our optical cavity sits inside a microwave resonator, allowing us to probe the
spin transition which is tuned by an external magnetic field. We show a
modified optically detected magnetic resonance measurement that measures
population transfer by a change in coupling strength rather than absorption
coefficient. This modification was enabled by the strong coupling to our modes,
and allows us to optically probe the spin transition detuned by more than the
inhomogeneous linewidth. We contrast this measurement with electron
paramagnetic resonance to experimentally show that our optical modes are
confined in a region of large microwave magnetic field and we explore how such
a geometry could be used for coherent microwave-optical transduction.
Related papers
- Sculpting ultrastrong light-matter coupling through spatial matter
structuring [0.0]
We experimentally implement a novel strategy to sculpt ultrastrong multi-mode coupling.
We control the number of light-matter coupled modes, their octave-spanning frequency spectra, and their response to magnetic tuning.
This offers novel pathways for controlling dissipation, tailoring quantum light sources, nonlinearities, correlations, as well as entanglement in quantum information processing.
arXiv Detail & Related papers (2023-11-30T06:31:56Z) - Resolving Fock states near the Kerr-free point of a superconducting
resonator [51.03394077656548]
We have designed a tunable nonlinear resonator terminated by a SNAIL (Superconducting Asymmetric Inductive eLement)
We have excited photons near this Kerr-free point and characterized the device using a transmon qubit.
arXiv Detail & Related papers (2022-10-18T09:55:58Z) - Searching for Ultra-Light Axions with Twisted Cavity Resonators of Anyon
Rotational Symmetry with Bulk Modes of Non-Zero Helicity [0.0]
M"obius-ring resonators stem from a well-studied and fascinating geometrical structure that features a one-sided topology.
We present a new type of resonator through the formation of twisted hollow structures using equilateral triangular cross-sections.
arXiv Detail & Related papers (2022-08-01T21:35:31Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - Photon generation and entanglement in a double superconducting cavity [105.54048699217668]
We study the dynamical Casimir effect in a double superconducting cavity in a quantum electrodynamics architecture.
We study the creation of photons when the walls oscillate harmonically with a small amplitude.
arXiv Detail & Related papers (2022-07-18T16:43:47Z) - Measuring the magnon-photon coupling in shaped ferromagnets: tuning of
the resonance frequency [50.591267188664666]
cavity photons and ferromagnetic spins excitations can exchange information coherently in hybrid architectures.
Speed enhancement is usually achieved by optimizing the geometry of the electromagnetic cavity.
We show that the geometry of the ferromagnet plays also an important role, by setting the fundamental frequency of the magnonic resonator.
arXiv Detail & Related papers (2022-07-08T11:28:31Z) - Probing Strong Coupling between a Microwave Cavity and a Spin Ensemble
with Raman Heterodyne Spectroscopy [0.0]
Raman heterodyne spectroscopy is used to probe an isotopically purified ensemble of erbium dopants.
Because the erbium electron spin transition is strongly coupled to the microwave cavity, we observed Raman heterodyne signals at the resonant frequencies of the hybrid spin-cavity modes.
arXiv Detail & Related papers (2021-05-12T01:14:39Z) - Tuning the mode-splitting of a semiconductor microcavity with uniaxial
stress [49.212762955720706]
In this work we use an open microcavity composed of a "bottom" semiconductor distributed Bragg reflector (DBR) incorporating an n-i-p heterostructure.
We demonstrate a reversible in-situ technique to tune the mode-splitting by applying uniaxial stress to the semiconductor DBR.
A thorough study of the mode-splitting and its tuning across the stop-band leads to a quantitative understanding of the mechanism behind the results.
arXiv Detail & Related papers (2021-02-18T13:38:32Z) - Photon Condensation and Enhanced Magnetism in Cavity QED [68.8204255655161]
A system of magnetic molecules coupled to microwave cavities undergoes the equilibrium superradiant phase transition.
The effect of the coupling is first illustrated by the vacuum-induced ferromagnetic order in a quantum Ising model.
A transmission experiment is shown to resolve the transition, measuring the quantum electrodynamical control of magnetism.
arXiv Detail & Related papers (2020-11-07T11:18:24Z) - Cavity quantum electro-optics: Microwave-telecom conversion in the
quantum ground state [0.0]
We present a cavity electro-optic transceiver operating in a millikelvin environment with a mode occupancy as low as 0.025 $pm$ 0.005 noise photons.
The device is versatile and compatible with superconducting qubits, which might open the way for fast and deterministic entanglement distribution between microwave and optical fields.
arXiv Detail & Related papers (2020-05-26T14:35:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.