論文の概要: Does Medical Imaging learn different Convolution Filters?
- arxiv url: http://arxiv.org/abs/2210.13799v1
- Date: Tue, 25 Oct 2022 07:05:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-26 14:22:39.381176
- Title: Does Medical Imaging learn different Convolution Filters?
- Title(参考訳): 医用イメージングは様々な畳み込みフィルタを学んでいるか?
- Authors: Paul Gavrikov and Janis Keuper
- Abstract要約: 本研究では,何百もの異種画像モデルを含む大規模研究を通して,学習した畳み込みフィルタの分布について検討する。
研究された画像領域のうち、医療画像モデルでは、"スパイキー"分布を通じて大きなアウトリーチを示すように見えた。
基本的な違いの代わりに、いくつかのアーキテクチャにおける特定の処理によるオフレイジがあることが示されています。
- 参考スコア(独自算出の注目度): 2.0305676256390934
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent work has investigated the distributions of learned convolution filters
through a large-scale study containing hundreds of heterogeneous image models.
Surprisingly, on average, the distributions only show minor drifts in
comparisons of various studied dimensions including the learned task, image
domain, or dataset. However, among the studied image domains, medical imaging
models appeared to show significant outliers through "spikey" distributions,
and, therefore, learn clusters of highly specific filters different from other
domains. Following this observation, we study the collected medical imaging
models in more detail. We show that instead of fundamental differences, the
outliers are due to specific processing in some architectures. Quite the
contrary, for standardized architectures, we find that models trained on
medical data do not significantly differ in their filter distributions from
similar architectures trained on data from other domains. Our conclusions
reinforce previous hypotheses stating that pre-training of imaging models can
be done with any kind of diverse image data.
- Abstract(参考訳): 最近の研究は、何百もの異種画像モデルを含む大規模研究を通じて、学習畳み込みフィルタの分布を調査している。
驚くべきことに、平均的な分布は、学習されたタスク、画像ドメイン、データセットを含むさまざまな研究領域の比較において、小さなドリフトしか示さない。
しかし, 画像領域では, 医用画像モデルでは"スパイキー"分布によって大きな外れがみられ, それゆえ, 他の領域と異なる高度に特異的なフィルタのクラスタを学習する。
この観察の後,収集した医用画像モデルについてより詳細に検討した。
根本的な違いではなく、外れ値が特定のアーキテクチャの処理によるものであることが分かる。
それとは逆に、標準化されたアーキテクチャでは、医療データで訓練されたモデルは、他のドメインのデータで訓練された類似したアーキテクチャとフィルタの分布に大きく違いはない。
我々の結論は、画像モデルの事前トレーニングは、あらゆる種類の画像データで行えるという、以前の仮説を補強するものである。
関連論文リスト
- Disease Classification and Impact of Pretrained Deep Convolution Neural Networks on Diverse Medical Imaging Datasets across Imaging Modalities [0.0]
本稿では,種々の医用画像データセット間での伝達学習を伴う,事前訓練された深部畳み込みニューラルネットワークの使用の複雑さについて検討する。
固定特徴抽出器として事前訓練されたモデルを使用することで,データセットに関係なく性能が低下することを示す。
また、より深く複雑なアーキテクチャが必ずしも最高のパフォーマンスをもたらすとは限らないことも判明した。
論文 参考訳(メタデータ) (2024-08-30T04:51:19Z) - Training Class-Imbalanced Diffusion Model Via Overlap Optimization [55.96820607533968]
実世界のデータセットで訓練された拡散モデルは、尾クラスの忠実度が劣ることが多い。
拡散モデルを含む深い生成モデルは、豊富な訓練画像を持つクラスに偏りがある。
本研究では,異なるクラスに対する合成画像の分布の重複を最小限に抑えるために,コントラスト学習に基づく手法を提案する。
論文 参考訳(メタデータ) (2024-02-16T16:47:21Z) - Robustness of Deep Learning for Accelerated MRI: Benefits of Diverse Training Data [23.121306385784397]
モデルの性能と強靭性に及ぼすトレーニングデータの影響について検討した。
異なるMRIスキャナーと解剖学から得られた様々なデータ分布の組み合わせに基づいて訓練されたモデルは、特定の目標分布に対して最適な単一分布で訓練されたモデルと同等かそれ以上の堅牢性を示す。
論文 参考訳(メタデータ) (2023-12-16T00:23:21Z) - Domain Generalization for Mammographic Image Analysis with Contrastive
Learning [62.25104935889111]
効果的なディープラーニングモデルのトレーニングには、さまざまなスタイルと品質を備えた大規模なデータが必要である。
より優れたスタイルの一般化能力を備えた深層学習モデルを実現するために,新しいコントラスト学習法が開発された。
提案手法は,様々なベンダスタイルドメインのマンモグラムや,いくつかのパブリックデータセットを用いて,広範囲かつ厳密に評価されている。
論文 参考訳(メタデータ) (2023-04-20T11:40:21Z) - Diffusion Art or Digital Forgery? Investigating Data Replication in
Diffusion Models [53.03978584040557]
生成した画像とトレーニングサンプルを比較し、コンテンツが複製されたことを検知する画像検索フレームワークについて検討する。
フレームワークをオックスフォード花、Celeb-A、ImageNet、LAIONなど複数のデータセットでトレーニングされた拡散モデルに適用することにより、トレーニングセットのサイズがコンテンツ複製の速度にどのように影響するかを議論する。
論文 参考訳(メタデータ) (2022-12-07T18:58:02Z) - Mine yOur owN Anatomy: Revisiting Medical Image Segmentation with Extremely Limited Labels [54.58539616385138]
我々は、Mine yOur owN Anatomy (MONA) と呼ばれる、新しい半教師付き2次元医用画像セグメンテーションフレームワークを紹介する。
まず、先行研究では、すべてのピクセルがモデルトレーニングに等しく重要であると論じており、我々はこの1つだけで意味のある解剖学的特徴を定義できないことを経験的に観察している。
第2に,医療画像を解剖学的特徴の集合に分解できるモデルを構築する。
論文 参考訳(メタデータ) (2022-09-27T15:50:31Z) - Learn to Ignore: Domain Adaptation for Multi-Site MRI Analysis [1.3079444139643956]
本稿では,画像に含まれるスキャナ関連の特徴を無視し,分類タスクに関連する特徴を学習する新しい手法を提案する。
本手法は,多発性硬化症患者と健常者との分類作業において,最先端の領域適応法よりも優れていた。
論文 参考訳(メタデータ) (2021-10-13T15:40:50Z) - Relational Subsets Knowledge Distillation for Long-tailed Retinal
Diseases Recognition [65.77962788209103]
本研究では,長尾データを知識に基づいて複数のクラスサブセットに分割し,クラスサブセット学習を提案する。
モデルがサブセット固有の知識の学習に集中するように強制する。
提案手法は長期網膜疾患認識タスクに有効であることが判明した。
論文 参考訳(メタデータ) (2021-04-22T13:39:33Z) - Generative Adversarial U-Net for Domain-free Medical Image Augmentation [49.72048151146307]
注釈付き医用画像の不足は、医用画像コンピューティングの分野における最大の課題の1つだ。
本稿では,生成逆U-Netという新しい生成手法を提案する。
当社の新しいモデルは、ドメインフリーで、さまざまな医療画像に汎用性があります。
論文 参考訳(メタデータ) (2021-01-12T23:02:26Z) - Domain Generalizer: A Few-shot Meta Learning Framework for Domain
Generalization in Medical Imaging [23.414905586808874]
モデルに依存しないメタラーニングフレームワークをベースとした領域一般化手法をバイオメディカルイメージングに適用する。
ドメインに依存しない特徴表現を学習し、未知のテスト分布に対するモデルの一般化を改善する。
本手法は, 画像取得プロトコル, 解剖学, スキャン対象地域, 画像解析対象地域, 画像解析対象地域, 画像解析対象地域, 画像解析対象地域, 画像解析対象地域, 画像診断対象地域, 画像診断対象地域, 画像診断対象地域, 画像診断対象地域, 画像診断対象地域, 画像診断対象地域, 画像診断対象地域, 画像診断対象地域, 画像診断対象地域, 画像診断対象地域, 画像診断対象地域, 画像診断対象地域, 画像診断対象地域, 画像診断対象地域, 画像診断
論文 参考訳(メタデータ) (2020-08-18T03:35:56Z) - Improving Calibration and Out-of-Distribution Detection in Medical Image
Segmentation with Convolutional Neural Networks [8.219843232619551]
畳み込みニューラルネットワーク(CNN)は強力な医用画像分割モデルであることが示されている。
マルチタスク学習、すなわち、複数の異なるデータセット上で単一のモデルをトレーニングすることを提唱する。
一つのCNNが、文脈を自動的に認識し、各文脈における関心の組織を正確に区分することを学ぶだけでなく、そのようなジョイントモデルの方が、より正確でより良い校正された予測を持つことも示している。
論文 参考訳(メタデータ) (2020-04-12T23:42:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。