論文の概要: Confidence-Calibrated Face and Kinship Verification
- arxiv url: http://arxiv.org/abs/2210.13905v5
- Date: Fri, 29 Sep 2023 12:37:05 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-02 10:24:43.638198
- Title: Confidence-Calibrated Face and Kinship Verification
- Title(参考訳): 信頼度調整顔と近親相姦検証
- Authors: Min Xu, Ximiao Zhang and Xiuzhuang Zhou
- Abstract要約: 検証モデルにより、類似度スコアを任意の顔対に対する信頼スコアに変換することができる効果的な信頼度尺度を導入する。
また,実装が容易で,既存の検証モデルにも容易に適用可能な,信頼性校正アプローチであるAngular Scaling(ASC)を提案する。
我々の知識を最大限に活用するために、我々の研究は、現代の顔と親族関係の検証タスクに対する、初めての包括的信頼度校正ソリューションを提示した。
- 参考スコア(独自算出の注目度): 8.570969129199467
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we investigate the problem of prediction confidence in face
and kinship verification. Most existing face and kinship verification methods
focus on accuracy performance while ignoring confidence estimation for their
prediction results. However, confidence estimation is essential for modeling
reliability and trustworthiness in such high-risk tasks. To address this, we
introduce an effective confidence measure that allows verification models to
convert a similarity score into a confidence score for any given face pair. We
further propose a confidence-calibrated approach, termed Angular Scaling
Calibration (ASC). ASC is easy to implement and can be readily applied to
existing verification models without model modifications, yielding
accuracy-preserving and confidence-calibrated probabilistic verification
models. In addition, we introduce the uncertainty in the calibrated confidence
to boost the reliability and trustworthiness of the verification models in the
presence of noisy data. To the best of our knowledge, our work presents the
first comprehensive confidence-calibrated solution for modern face and kinship
verification tasks. We conduct extensive experiments on four widely used face
and kinship verification datasets, and the results demonstrate the
effectiveness of our proposed approach. Code and models are available at
https://github.com/cnulab/ASC.
- Abstract(参考訳): 本稿では,顔と血縁の検証における予測信頼度の問題について検討する。
既存の顔と血縁の検証手法の多くは、予測結果の信頼度を無視しながら精度に重点を置いている。
しかし,高リスクタスクにおける信頼性と信頼性のモデリングには信頼性推定が不可欠である。
そこで本研究では,任意の顔対に対して類似度スコアを信頼度スコアに変換するための効果的な信頼度尺度を提案する。
さらに,Angular Scaling Calibration (ASC)と呼ばれる信頼性校正手法を提案する。
ASCは実装が容易で、モデルの修正なしに既存の検証モデルに容易に適用でき、精度保存と信頼性校正の確率的検証モデルが得られる。
さらに, 校正信頼度の不確実性を導入し, 雑音データの存在下での検証モデルの信頼性と信頼性を高める。
我々の知識を最大限に活用するために、我々の研究は、現代の顔と親族関係の検証タスクに対する、初めての包括的信頼度補正ソリューションを提示した。
筆者らは4つの顔・血縁検証データセットについて広範な実験を行い,提案手法の有効性を実証した。
コードとモデルはhttps://github.com/cnulab/ascで入手できる。
関連論文リスト
- Confidence Aware Learning for Reliable Face Anti-spoofing [52.23271636362843]
本稿では,その能力境界を意識した信頼認識顔アンチスプーフィングモデルを提案する。
各サンプルの予測中にその信頼性を推定する。
実験の結果,提案したCA-FASは予測精度の低いサンプルを効果的に認識できることがわかった。
論文 参考訳(メタデータ) (2024-11-02T14:29:02Z) - Confidence Under the Hood: An Investigation into the Confidence-Probability Alignment in Large Language Models [14.5291643644017]
信頼性・確率アライメントの概念を紹介します。
モデルの内部と信頼感の一致を調査する。
分析したモデルのうち、OpenAIのGPT-4は信頼性と信頼性のアライメントが最強であった。
論文 参考訳(メタデータ) (2024-05-25T15:42:04Z) - Revisiting Confidence Estimation: Towards Reliable Failure Prediction [53.79160907725975]
多くの信頼度推定法は誤分類誤りを検出するのに有害である。
本稿では, 最先端の故障予測性能を示す平坦な最小値を求めることにより, 信頼性ギャップを拡大することを提案する。
論文 参考訳(メタデータ) (2024-03-05T11:44:14Z) - Binary Classification with Confidence Difference [100.08818204756093]
本稿では,信頼性差分法 (ConfDiff) という,弱教師付き二項分類問題について考察する。
本稿では,この問題に対処するためのリスク一貫性のあるアプローチを提案し,推定誤差が最適収束率と一致することを示す。
また,整合性や収束率も証明されたオーバーフィッティング問題を緩和するためのリスク補正手法も導入する。
論文 参考訳(メタデータ) (2023-10-09T11:44:50Z) - Trust, but Verify: Using Self-Supervised Probing to Improve
Trustworthiness [29.320691367586004]
我々は、訓練されたモデルに対する自信の過剰な問題をチェックおよび緩和することのできる、自己教師型探索の新しいアプローチを導入する。
既存の信頼性関連手法に対して,プラグイン・アンド・プレイ方式で柔軟に適用可能な,シンプルで効果的なフレームワークを提供する。
論文 参考訳(メタデータ) (2023-02-06T08:57:20Z) - Reliability-Aware Prediction via Uncertainty Learning for Person Image
Retrieval [51.83967175585896]
UALは、データ不確実性とモデル不確実性を同時に考慮し、信頼性に配慮した予測を提供することを目的としている。
データ不確実性はサンプル固有のノイズを捕捉する」一方、モデル不確実性はサンプルの予測に対するモデルの信頼を表現している。
論文 参考訳(メタデータ) (2022-10-24T17:53:20Z) - Learning Confidence for Transformer-based Neural Machine Translation [38.679505127679846]
本稿では,ニューラルネットワーク翻訳(NMT)モデルのトレーニングと協調して,教師なしの信頼度推定学習を提案する。
我々は、NMTモデルが正しい予測を行うために必要なヒントの数として、信頼性を説明し、より多くのヒントは信頼性の低いことを示す。
学習された信頼度推定は文・単語レベルの品質評価タスクにおいて高い精度が得られることを示す。
論文 参考訳(メタデータ) (2022-03-22T01:51:58Z) - MACEst: The reliable and trustworthy Model Agnostic Confidence Estimator [0.17188280334580192]
我々は、標準的な機械学習ポイント予測アルゴリズムに基づく信頼度推定は、基本的に欠陥があると主張している。
MACEstは信頼性と信頼性の高い信頼度推定を提供するモデル非依存信頼度推定器である。
論文 参考訳(メタデータ) (2021-09-02T14:34:06Z) - Uncertainty-sensitive Activity Recognition: a Reliability Benchmark and
the CARING Models [37.60817779613977]
本稿では,現代の行動認識アーキテクチャの信頼度が,正しい結果の確率を反映していることを示す最初の研究を行う。
新たなキャリブレーションネットワークを通じて、モデル出力を現実的な信頼性推定に変換する新しいアプローチを紹介します。
論文 参考訳(メタデータ) (2021-01-02T15:41:21Z) - Inducing Predictive Uncertainty Estimation for Face Recognition [102.58180557181643]
顔画像の「マッドペア」から画像品質訓練データを自動的に生成する手法を提案する。
生成したデータを用いて、顔画像の信頼度を推定するために、PCNetと呼ばれる軽量な予測信頼ネットワークを訓練する。
論文 参考訳(メタデータ) (2020-09-01T17:52:00Z) - Binary Classification from Positive Data with Skewed Confidence [85.18941440826309]
肯定的信頼度(Pconf)分類は、有望な弱教師付き学習法である。
実際には、信頼はアノテーションプロセスで生じるバイアスによって歪められることがある。
本稿では、スキュード信頼度のパラメータ化モデルを導入し、ハイパーパラメータを選択する方法を提案する。
論文 参考訳(メタデータ) (2020-01-29T00:04:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。