Learning to Reuse Distractors to support Multiple Choice Question
Generation in Education
- URL: http://arxiv.org/abs/2210.13964v1
- Date: Tue, 25 Oct 2022 12:48:56 GMT
- Title: Learning to Reuse Distractors to support Multiple Choice Question
Generation in Education
- Authors: Semere Kiros Bitew, Amir Hadifar, Lucas Sterckx, Johannes Deleu, Chris
Develder and Thomas Demeester
- Abstract summary: This paper studies how a large existing set of manually created answers and distractors can be leveraged to help teachers in creating new multiple choice questions (MCQs)
We built several data-driven models based on context-aware question and distractor representations, and compared them with static feature-based models.
Both automatic and human evaluations indicate that context-aware models consistently outperform a static feature-based approach.
- Score: 19.408786425460498
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Multiple choice questions (MCQs) are widely used in digital learning systems,
as they allow for automating the assessment process. However, due to the
increased digital literacy of students and the advent of social media
platforms, MCQ tests are widely shared online, and teachers are continuously
challenged to create new questions, which is an expensive and time-consuming
task. A particularly sensitive aspect of MCQ creation is to devise relevant
distractors, i.e., wrong answers that are not easily identifiable as being
wrong. This paper studies how a large existing set of manually created answers
and distractors for questions over a variety of domains, subjects, and
languages can be leveraged to help teachers in creating new MCQs, by the smart
reuse of existing distractors. We built several data-driven models based on
context-aware question and distractor representations, and compared them with
static feature-based models. The proposed models are evaluated with automated
metrics and in a realistic user test with teachers. Both automatic and human
evaluations indicate that context-aware models consistently outperform a static
feature-based approach. For our best-performing context-aware model, on average
3 distractors out of the 10 shown to teachers were rated as high-quality
distractors. We create a performance benchmark, and make it public, to enable
comparison between different approaches and to introduce a more standardized
evaluation of the task. The benchmark contains a test of 298 educational
questions covering multiple subjects & languages and a 77k multilingual pool of
distractor vocabulary for future research.
Related papers
- Multimodal Reranking for Knowledge-Intensive Visual Question Answering [77.24401833951096]
We introduce a multi-modal reranker to improve the ranking quality of knowledge candidates for answer generation.
Experiments on OK-VQA and A-OKVQA show that multi-modal reranker from distant supervision provides consistent improvements.
arXiv Detail & Related papers (2024-07-17T02:58:52Z) - Improving Automated Distractor Generation for Math Multiple-choice Questions with Overgenerate-and-rank [44.04217284677347]
We propose a novel method to enhance the quality of generated distractors through overgenerate-and-rank.
Our ranking model increases alignment with human-authored distractors, although human-authored ones are still preferred over generated ones.
arXiv Detail & Related papers (2024-04-19T00:25:44Z) - Exploring Automated Distractor Generation for Math Multiple-choice Questions via Large Language Models [40.50115385623107]
Multiple-choice questions (MCQs) are ubiquitous in almost all levels of education since they are easy to administer, grade, and reliable format in assessments and practices.
One of the most important aspects of MCQs is the distractors, i.e., incorrect options that are designed to target common errors or misconceptions among real students.
To date, the task of crafting high-quality distractors largely remains a labor and time-intensive process for teachers and learning content designers, which has limited scalability.
arXiv Detail & Related papers (2024-04-02T17:31:58Z) - Automating question generation from educational text [1.9325905076281444]
The use of question-based activities (QBAs) is wide-spread in education, forming an integral part of the learning and assessment process.
We design and evaluate an automated question generation tool for formative and summative assessment in schools.
arXiv Detail & Related papers (2023-09-26T15:18:44Z) - Automated Distractor and Feedback Generation for Math Multiple-choice
Questions via In-context Learning [43.83422798569986]
Multiple-choice questions (MCQs) are ubiquitous in almost all levels of education since they are easy to administer, grade, and reliable form of assessment.
To date, the task of crafting high-quality distractors has largely remained a labor-intensive process for teachers and learning content designers.
We propose a simple, in-context learning-based solution for automated distractor and corresponding feedback message generation.
arXiv Detail & Related papers (2023-08-07T01:03:04Z) - Learn to Explain: Multimodal Reasoning via Thought Chains for Science
Question Answering [124.16250115608604]
We present Science Question Answering (SQA), a new benchmark that consists of 21k multimodal multiple choice questions with a diverse set of science topics and annotations of their answers with corresponding lectures and explanations.
We show that SQA improves the question answering performance by 1.20% in few-shot GPT-3 and 3.99% in fine-tuned UnifiedQA.
Our analysis further shows that language models, similar to humans, benefit from explanations to learn from fewer data and achieve the same performance with just 40% of the data.
arXiv Detail & Related papers (2022-09-20T07:04:24Z) - Automatic Short Math Answer Grading via In-context Meta-learning [2.0263791972068628]
We study the problem of automatic short answer grading for students' responses to math questions.
We use MathBERT, a variant of the popular language model BERT adapted to mathematical content, as our base model.
Second, we use an in-context learning approach that provides scoring examples as input to the language model.
arXiv Detail & Related papers (2022-05-30T16:26:02Z) - Quiz Design Task: Helping Teachers Create Quizzes with Automated
Question Generation [87.34509878569916]
This paper focuses on the use case of helping teachers automate the generation of reading comprehension quizzes.
In our study, teachers building a quiz receive question suggestions, which they can either accept or refuse with a reason.
arXiv Detail & Related papers (2022-05-03T18:59:03Z) - Neural Multi-Task Learning for Teacher Question Detection in Online
Classrooms [50.19997675066203]
We build an end-to-end neural framework that automatically detects questions from teachers' audio recordings.
By incorporating multi-task learning techniques, we are able to strengthen the understanding of semantic relations among different types of questions.
arXiv Detail & Related papers (2020-05-16T02:17:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.