MDK12-Bench: A Multi-Discipline Benchmark for Evaluating Reasoning in Multimodal Large Language Models
- URL: http://arxiv.org/abs/2504.05782v1
- Date: Tue, 08 Apr 2025 08:06:53 GMT
- Title: MDK12-Bench: A Multi-Discipline Benchmark for Evaluating Reasoning in Multimodal Large Language Models
- Authors: Pengfei Zhou, Fanrui Zhang, Xiaopeng Peng, Zhaopan Xu, Jiaxin Ai, Yansheng Qiu, Chuanhao Li, Zhen Li, Ming Li, Yukang Feng, Jianwen Sun, Haoquan Zhang, Zizhen Li, Xiaofeng Mao, Wangbo Zhao, Kai Wang, Xiaojun Chang, Wenqi Shao, Yang You, Kaipeng Zhang,
- Abstract summary: We introduce MDK12-Bench, a multi-disciplinary benchmark assessing the reasoning capabilities of MLLMs via real-world K-12 examinations.<n>Our benchmark comprises 140K reasoning instances across diverse difficulty levels from primary school to 12th grade.<n>It features 6,827 instance-level knowledge point annotations based on a well-organized knowledge structure, detailed answer explanations, difficulty labels and cross-year partitions.
- Score: 50.43793764203352
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multimodal reasoning, which integrates language and visual cues into problem solving and decision making, is a fundamental aspect of human intelligence and a crucial step toward artificial general intelligence. However, the evaluation of multimodal reasoning capabilities in Multimodal Large Language Models (MLLMs) remains inadequate. Most existing reasoning benchmarks are constrained by limited data size, narrow domain coverage, and unstructured knowledge distribution. To close these gaps, we introduce MDK12-Bench, a multi-disciplinary benchmark assessing the reasoning capabilities of MLLMs via real-world K-12 examinations. Spanning six disciplines (math, physics, chemistry, biology, geography, and information science), our benchmark comprises 140K reasoning instances across diverse difficulty levels from primary school to 12th grade. It features 6,827 instance-level knowledge point annotations based on a well-organized knowledge structure, detailed answer explanations, difficulty labels and cross-year partitions, providing a robust platform for comprehensive evaluation. Additionally, we present a novel dynamic evaluation framework to mitigate data contamination issues by bootstrapping question forms, question types, and image styles during evaluation. Extensive experiment on MDK12-Bench reveals the significant limitation of current MLLMs in multimodal reasoning. The findings on our benchmark provide insights into the development of the next-generation models. Our data and codes are available at https://github.com/LanceZPF/MDK12.
Related papers
- VisuLogic: A Benchmark for Evaluating Visual Reasoning in Multi-modal Large Language Models [121.03333569013148]
We introduce VisuLogic: a benchmark of 1,000 human-verified problems across six categories.
These types of questions can be evaluated to assess the visual reasoning capabilities of MLLMs from multiple perspectives.
Most models score below 30% accuracy-only slightly above the 25% random baseline and far below the 51.4% achieved by humans.
arXiv Detail & Related papers (2025-04-21T17:59:53Z) - VERIFY: A Benchmark of Visual Explanation and Reasoning for Investigating Multimodal Reasoning Fidelity [34.29409506366145]
VERIFY is a benchmark designed to isolate and rigorously evaluate the visual reasoning capabilities of state-of-the-art MLLMs.<n>Each problem is accompanied by a human-annotated reasoning path, making it the first to provide in-depth evaluation of model decision-making processes.<n>We propose novel metrics that assess visual reasoning fidelity beyond mere accuracy, highlighting critical imbalances in current model reasoning patterns.
arXiv Detail & Related papers (2025-03-14T16:26:11Z) - Can MLLMs Reason in Multimodality? EMMA: An Enhanced MultiModal ReAsoning Benchmark [73.27104042215207]
We introduce EMMA, a benchmark targeting organic multimodal reasoning across mathematics, physics, chemistry, and coding.<n>EMMA tasks demand advanced cross-modal reasoning that cannot be addressed by reasoning independently in each modality.<n>Our evaluation of state-of-the-art MLLMs on EMMA reveals significant limitations in handling complex multimodal and multi-step reasoning tasks.
arXiv Detail & Related papers (2025-01-09T18:55:52Z) - MMIE: Massive Multimodal Interleaved Comprehension Benchmark for Large Vision-Language Models [71.36392373876505]
We introduce MMIE, a large-scale benchmark for evaluating interleaved multimodal comprehension and generation in Large Vision-Language Models (LVLMs)<n>MMIE comprises 20K meticulously curated multimodal queries, spanning 3 categories, 12 fields, and 102 subfields, including mathematics, coding, physics, literature, health, and arts.<n>It supports both interleaved inputs and outputs, offering a mix of multiple-choice and open-ended question formats to evaluate diverse competencies.
arXiv Detail & Related papers (2024-10-14T04:15:00Z) - ErrorRadar: Benchmarking Complex Mathematical Reasoning of Multimodal Large Language Models Via Error Detection [60.297079601066784]
We introduce ErrorRadar, the first benchmark designed to assess MLLMs' capabilities in error detection.
ErrorRadar evaluates two sub-tasks: error step identification and error categorization.
It consists of 2,500 high-quality multimodal K-12 mathematical problems, collected from real-world student interactions.
Results indicate significant challenges still remain, as GPT-4o with best performance is still around 10% behind human evaluation.
arXiv Detail & Related papers (2024-10-06T14:59:09Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
Large language models (LLMs) have shown increasing capability in problem-solving and decision-making.
We present a process-based benchmark MR-Ben that demands a meta-reasoning skill.
Our meta-reasoning paradigm is especially suited for system-2 slow thinking.
arXiv Detail & Related papers (2024-06-20T03:50:23Z) - NPHardEval4V: A Dynamic Reasoning Benchmark of Multimodal Large Language
Models [34.91372939329467]
We introduce a benchmark, NPHardEval4V, to evaluate the pure reasoning abilities of MLLMs.
Our findings reveal significant discrepancies in reasoning abilities across different models.
We also investigate the impact of different prompting styles, including visual, text, and combined visual and text prompts, on the reasoning abilities of MLLMs.
arXiv Detail & Related papers (2024-03-04T07:10:31Z) - SceMQA: A Scientific College Entrance Level Multimodal Question
Answering Benchmark [42.91902601376494]
The paper introduces SceMQA, a novel benchmark for scientific multimodal question answering at the college entrance level.
SceMQA focuses on core science subjects including Mathematics, Physics, Chemistry, and Biology.
It features a blend of multiple-choice and free-response formats, ensuring a comprehensive evaluation of AI models' abilities.
arXiv Detail & Related papers (2024-02-06T19:16:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.