The Debate Over Understanding in AI's Large Language Models
- URL: http://arxiv.org/abs/2210.13966v2
- Date: Thu, 27 Oct 2022 15:51:43 GMT
- Title: The Debate Over Understanding in AI's Large Language Models
- Authors: Melanie Mitchell and David C. Krakauer
- Abstract summary: We survey a current, heated debate in the AI research community on whether large pre-trained language models can be said to "understand" language.
We argue that a new science of intelligence can be developed that will provide insight into distinct modes of understanding.
- Score: 0.18275108630751835
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We survey a current, heated debate in the AI research community on whether
large pre-trained language models can be said to "understand" language -- and
the physical and social situations language encodes -- in any important sense.
We describe arguments that have been made for and against such understanding,
and key questions for the broader sciences of intelligence that have arisen in
light of these arguments. We contend that a new science of intelligence can be
developed that will provide insight into distinct modes of understanding, their
strengths and limitations, and the challenge of integrating diverse forms of
cognition.
Related papers
- Do great minds think alike? Investigating Human-AI Complementarity in Question Answering with CAIMIRA [43.116608441891096]
Humans outperform AI systems in knowledge-grounded abductive and conceptual reasoning.
State-of-the-art LLMs like GPT-4 and LLaMA show superior performance on targeted information retrieval.
arXiv Detail & Related papers (2024-10-09T03:53:26Z) - Visual-O1: Understanding Ambiguous Instructions via Multi-modal Multi-turn Chain-of-thoughts Reasoning [53.45295657891099]
This paper proposes Visual-O1, a multi-modal multi-turn chain-of-thought reasoning framework.
It simulates human multi-modal multi-turn reasoning, providing instantial experience for highly intelligent models.
Our work highlights the potential of artificial intelligence to work like humans in real-world scenarios with uncertainty and ambiguity.
arXiv Detail & Related papers (2024-10-04T11:18:41Z) - Cognition is All You Need -- The Next Layer of AI Above Large Language
Models [0.0]
We present Cognitive AI, a framework for neurosymbolic cognition outside of large language models.
We propose that Cognitive AI is a necessary precursor for the evolution of the forms of AI, such as AGI, and specifically claim that AGI cannot be achieved by probabilistic approaches on their own.
We conclude with a discussion of the implications for large language models, adoption cycles in AI, and commercial Cognitive AI development.
arXiv Detail & Related papers (2024-03-04T16:11:57Z) - A Philosophical Introduction to Language Models -- Part I: Continuity
With Classic Debates [0.05657375260432172]
This article serves both as a primer on language models for philosophers, and as an opinionated survey of their significance.
We argue that the success of language models challenges several long-held assumptions about artificial neural networks.
This sets the stage for the companion paper (Part II), which turns to novel empirical methods for probing the inner workings of language models.
arXiv Detail & Related papers (2024-01-08T14:12:31Z) - Enabling High-Level Machine Reasoning with Cognitive Neuro-Symbolic
Systems [67.01132165581667]
We propose to enable high-level reasoning in AI systems by integrating cognitive architectures with external neuro-symbolic components.
We illustrate a hybrid framework centered on ACT-R and we discuss the role of generative models in recent and future applications.
arXiv Detail & Related papers (2023-11-13T21:20:17Z) - Large Language Models for Scientific Synthesis, Inference and
Explanation [56.41963802804953]
We show how large language models can perform scientific synthesis, inference, and explanation.
We show that the large language model can augment this "knowledge" by synthesizing from the scientific literature.
This approach has the further advantage that the large language model can explain the machine learning system's predictions.
arXiv Detail & Related papers (2023-10-12T02:17:59Z) - The Language Labyrinth: Constructive Critique on the Terminology Used in
the AI Discourse [0.0]
This paper claims, that AI debates are still characterised by a lack of critical distance to metaphors like 'training', 'learning' or 'deciding'
As consequence, reflections regarding responsibility or potential use-cases are greatly distorted.
It is a conceptual work at the intersection of critical computer science and philosophy of language.
arXiv Detail & Related papers (2023-07-18T14:32:21Z) - Improving Factuality and Reasoning in Language Models through Multiagent
Debate [95.10641301155232]
We present a complementary approach to improve language responses where multiple language model instances propose and debate their individual responses and reasoning processes over multiple rounds to arrive at a common final answer.
Our findings indicate that this approach significantly enhances mathematical and strategic reasoning across a number of tasks.
Our approach may be directly applied to existing black-box models and uses identical procedure and prompts for all tasks we investigate.
arXiv Detail & Related papers (2023-05-23T17:55:11Z) - Language Cognition and Language Computation -- Human and Machine
Language Understanding [51.56546543716759]
Language understanding is a key scientific issue in the fields of cognitive and computer science.
Can a combination of the disciplines offer new insights for building intelligent language models?
arXiv Detail & Related papers (2023-01-12T02:37:00Z) - Towards Language-driven Scientific AI [0.0]
We set about designing AI systems that are able to address complex scientific tasks that challenge human capabilities to make new discoveries.
Central to our approach is the notion of natural language as core representation, reasoning, and exchange format between scientific AI and human scientists.
arXiv Detail & Related papers (2022-10-27T11:11:08Z) - MRKL Systems: A modular, neuro-symbolic architecture that combines large
language models, external knowledge sources and discrete reasoning [50.40151403246205]
Huge language models (LMs) have ushered in a new era for AI, serving as a gateway to natural-language-based knowledge tasks.
We define a flexible architecture with multiple neural models, complemented by discrete knowledge and reasoning modules.
We describe this neuro-symbolic architecture, dubbed the Modular Reasoning, Knowledge and Language (MRKL) system.
arXiv Detail & Related papers (2022-05-01T11:01:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.