論文の概要: Food Ingredients Recognition through Multi-label Learning
- arxiv url: http://arxiv.org/abs/2210.14147v1
- Date: Mon, 24 Oct 2022 10:18:26 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-26 13:11:59.796277
- Title: Food Ingredients Recognition through Multi-label Learning
- Title(参考訳): マルチラベル学習による食品成分認識
- Authors: Rameez Ismail, Zhaorui Yuan
- Abstract要約: ダイエット自動評価システムにおいて, 食材中のさまざまな食材を識別する能力は重要な決定要因である。
我々は,料理画像中の任意の成分を検出するために,深層多ラベル学習アプローチを採用し,最先端のニューラルネットワークを評価した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The ability to recognize various food-items in a generic food plate is a key
determinant for an automated diet assessment system. This study motivates the
need for automated diet assessment and proposes a framework to achieve this.
Within this framework, we focus on one of the core functionalities to visually
recognize various ingredients. To this end, we employed a deep multi-label
learning approach and evaluated several state-of-the-art neural networks for
their ability to detect an arbitrary number of ingredients in a dish image. The
models evaluated in this work follow a definite meta-structure, consisting of
an encoder and a decoder component. Two distinct decoding schemes, one based on
global average pooling and the other on attention mechanism, are evaluated and
benchmarked. Whereas for encoding, several well-known architectures, including
DenseNet, EfficientNet, MobileNet, Inception and Xception, were employed. We
present promising preliminary results for deep learning-based ingredients
detection, using a challenging dataset, Nutrition5K, and establish a strong
baseline for future explorations.
- Abstract(参考訳): ダイエット自動評価システムにおいて, 食材中のさまざまな食材を識別する能力は重要な決定要因である。
本研究は,食事の自動評価の必要性を動機付け,これを実現するための枠組みを提案する。
本フレームワークでは,各種成分を視覚的に認識する機能のひとつに焦点をあてる。
この目的のために,我々は深層マルチラベル学習手法を採用し,料理画像中の任意の数の成分を検出する能力について,最先端ニューラルネットワークの評価を行った。
この研究で評価されたモデルは、エンコーダとデコーダコンポーネントからなる一定のメタ構造に従う。
グローバル平均プーリングと注意機構に基づく2つの異なる復号方式を評価し,ベンチマークを行った。
エンコーディングに関しては、DenseNet、EfficientNet、MobileNet、Inception、Xceptionといった有名なアーキテクチャが採用されている。
本稿では,難解なデータセットである nutrition5k を用いて,深層学習に基づく成分検出のための予備的な結果を示し,今後の探索のための強固なベースラインを確立する。
関連論文リスト
- Recognizing Multiple Ingredients in Food Images Using a
Single-Ingredient Classification Model [4.409722014494348]
本研究では,食品画像から区切られた成分を認識するための高度なアプローチを提案する。
本手法は、位置決めおよびスライドウインドウ技術を用いて、成分の候補領域をローカライズする。
分類モデルの効率を向上する新しいモデルプルーニング法を提案する。
論文 参考訳(メタデータ) (2024-01-26T00:46:56Z) - FIRE: Food Image to REcipe generation [10.45344523054623]
フードコンピューティングは、食品画像のレシピ情報を自律的に生成できるエンドツーエンドのインテリジェントシステムを開発することを目的としている。
本稿では,食品コンピューティング分野におけるレシピ生成に適した新しい手法であるFIREを提案する。
本稿では、FIREと大規模言語モデルのプロンプトを統合することの恩恵を享受できる2つの実用的なアプリケーションを紹介する。
論文 参考訳(メタデータ) (2023-08-28T08:14:20Z) - Food Image Classification and Segmentation with Attention-based Multiple
Instance Learning [51.279800092581844]
本稿では,食品画像分類とセマンティックセグメンテーションモデルを訓練するための弱教師付き方法論を提案する。
提案手法は、注意に基づくメカニズムと組み合わせて、複数のインスタンス学習アプローチに基づいている。
提案手法の有効性を検証するため,FoodSeg103データセット内の2つのメタクラスについて実験を行った。
論文 参考訳(メタデータ) (2023-08-22T13:59:47Z) - Learning Structural Representations for Recipe Generation and Food
Retrieval [101.97397967958722]
本稿では,食品レシピ生成課題に取り組むために,構造認識ネットワーク(SGN)の新たな枠組みを提案する。
提案モデルは高品質でコヒーレントなレシピを作成でき、ベンチマークRecipe1Mデータセット上で最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2021-10-04T06:36:31Z) - Joint Learning of Neural Transfer and Architecture Adaptation for Image
Recognition [77.95361323613147]
現在の最先端の視覚認識システムは、大規模データセット上でニューラルネットワークを事前トレーニングし、より小さなデータセットでネットワーク重みを微調整することに依存している。
本稿では,各ドメインタスクに適応したネットワークアーキテクチャの動的適応と,効率と効率の両面で重みの微調整の利点を実証する。
本手法は,ソースドメインタスクでスーパーネットトレーニングを自己教師付き学習に置き換え,下流タスクで線形評価を行うことにより,教師なしパラダイムに容易に一般化することができる。
論文 参考訳(メタデータ) (2021-03-31T08:15:17Z) - Revamping Cross-Modal Recipe Retrieval with Hierarchical Transformers
and Self-supervised Learning [17.42688184238741]
近年, 生活における食品の重要性から, クロスモーダルなレシピ検索が注目されている。
本稿では,テキストおよび画像のエンコーダの確立と高性能化に基づく,簡易なエンド・ツー・エンドモデルを提案する。
提案手法は,Recipe1Mデータセットのクロスモーダルレシピ検索タスクにおける最新性能を実現する。
論文 参考訳(メタデータ) (2021-03-24T10:17:09Z) - Visual Aware Hierarchy Based Food Recognition [10.194167945992938]
本稿では,コンボリューショナルニューラルネットワーク(CNN)をバックボーンアーキテクチャとして用いた2段階の食品認識システムを提案する。
食品ローカライゼーションのステップは、食品領域を識別するFaster R-CNN法の実装に基づいている。
食品分類工程では、視覚的に類似した食品カテゴリーを自動的にまとめて階層構造を生成することができる。
論文 参考訳(メタデータ) (2020-12-06T20:25:31Z) - Structure-Aware Generation Network for Recipe Generation from Images [142.047662926209]
食品画像と材料のみに基づいて調理指導を行うオープン・リサーチ・タスクについて検討する。
ターゲットレシピは長い段落であり、構造情報に関する注釈を持たない。
本稿では,食品レシピ生成課題に取り組むために,構造認識ネットワーク(SGN)の新たな枠組みを提案する。
論文 参考訳(メタデータ) (2020-09-02T10:54:25Z) - ISIA Food-500: A Dataset for Large-Scale Food Recognition via Stacked
Global-Local Attention Network [50.7720194859196]
ウィキペディアのリストから500のカテゴリと399,726の画像を含むデータセットISIA Food-500を紹介する。
このデータセットは、既存の一般的なベンチマークデータセットをカテゴリカバレッジとデータボリュームで上回る。
食品認識のための2つのサブネットワークからなるグローバルローカルアテンションネットワークを提案する。
論文 参考訳(メタデータ) (2020-08-13T02:48:27Z) - Deep Multimodal Neural Architecture Search [178.35131768344246]
様々なマルチモーダル学習タスクのための一般化された深層マルチモーダルニューラルアーキテクチャサーチ(MMnas)フレームワークを考案する。
マルチモーダル入力が与えられたら、まずプリミティブ演算のセットを定義し、その後、ディープエンコーダ-デコーダベースの統一バックボーンを構築する。
統合されたバックボーンの上にタスク固有のヘッドをアタッチして、異なるマルチモーダル学習タスクに取り組む。
論文 参考訳(メタデータ) (2020-04-25T07:00:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。