Motion correction in MRI using deep learning and a novel hybrid loss
function
- URL: http://arxiv.org/abs/2210.14156v1
- Date: Wed, 19 Oct 2022 14:40:41 GMT
- Title: Motion correction in MRI using deep learning and a novel hybrid loss
function
- Authors: Lei Zhang, Xiaoke Wang, Michael Rawson, Radu Balan, Edward H.
Herskovits, Elias Melhem, Linda Chang, Ze Wang, and Thomas Ernst
- Abstract summary: Deep learning method (MC-Net) developed to suppress motion artifacts in brain magnetic resonance imaging (MRI)
MC-Net was derived from a UNet combined with a two-stage multi-loss function.
- Score: 11.424624100447332
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Purpose To develop and evaluate a deep learning-based method (MC-Net) to
suppress motion artifacts in brain magnetic resonance imaging (MRI). Methods
MC-Net was derived from a UNet combined with a two-stage multi-loss function.
T1-weighted axial brain images contaminated with synthetic motions were used to
train the network. Evaluation used simulated T1 and T2-weighted axial, coronal,
and sagittal images unseen during training, as well as T1-weighted images with
motion artifacts from real scans. Performance indices included the peak signal
to noise ratio (PSNR), structural similarity index measure (SSIM), and visual
reading scores. Two clinical readers scored the images. Results The MC-Net
outperformed other methods implemented in terms of PSNR and SSIM on the T1
axial test set. The MC-Net significantly improved the quality of all
T1-weighted images (for all directions and for simulated as well as real motion
artifacts), both on quantitative measures and visual scores. However, the
MC-Net performed poorly on images of untrained contrast (T2-weighted).
Conclusion The proposed two-stage multi-loss MC-Net can effectively suppress
motion artifacts in brain MRI without compromising image context. Given the
efficiency of the MC-Net (single image processing time ~40ms), it can
potentially be used in real clinical settings. To facilitate further research,
the code and trained model are available at
https://github.com/MRIMoCo/DL_Motion_Correction.
Related papers
- Unifying Subsampling Pattern Variations for Compressed Sensing MRI with Neural Operators [72.79532467687427]
Compressed Sensing MRI reconstructs images of the body's internal anatomy from undersampled and compressed measurements.
Deep neural networks have shown great potential for reconstructing high-quality images from highly undersampled measurements.
We propose a unified model that is robust to different subsampling patterns and image resolutions in CS-MRI.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - IM-MoCo: Self-supervised MRI Motion Correction using Motion-Guided Implicit Neural Representations [2.2265038612930663]
Motion artifacts in Magnetic Resonance Imaging (MRI) arise due to relatively long acquisition times.
Traditional motion correction methods often fail to address severe motion, leading to distorted and unreliable results.
We present an instance-wise motion correction pipeline that leverages motion-guided Implicit Neural Representations (INRs)
Our method improves classification outcomes by at least $+1.5$ accuracy percentage points compared to motion-corrupted images.
arXiv Detail & Related papers (2024-07-03T10:14:33Z) - MindFormer: Semantic Alignment of Multi-Subject fMRI for Brain Decoding [50.55024115943266]
We introduce a novel semantic alignment method of multi-subject fMRI signals using so-called MindFormer.
This model is specifically designed to generate fMRI-conditioned feature vectors that can be used for conditioning Stable Diffusion model for fMRI- to-image generation or large language model (LLM) for fMRI-to-text generation.
Our experimental results demonstrate that MindFormer generates semantically consistent images and text across different subjects.
arXiv Detail & Related papers (2024-05-28T00:36:25Z) - Simulation of acquisition shifts in T2 Flair MR images to stress test AI
segmentation networks [0.0]
The approach simulates "acquisition shift derivatives" of MR images based on MR signal equations.
Experiments comprise the validation of the simulated images by real MR scans and example stress tests on state-of-the-art MS lesion segmentation networks.
arXiv Detail & Related papers (2023-11-03T13:10:55Z) - Denoising Simulated Low-Field MRI (70mT) using Denoising Autoencoders
(DAE) and Cycle-Consistent Generative Adversarial Networks (Cycle-GAN) [68.8204255655161]
Cycle Consistent Generative Adversarial Network (GAN) is implemented to yield high-field, high resolution, high signal-to-noise ratio (SNR) Magnetic Resonance Imaging (MRI) images.
Images were utilized to train a Denoising Autoencoder (DAE) and a Cycle-GAN, with paired and unpaired cases.
This work demonstrates the use of a generative deep learning model that can outperform classical DAEs to improve low-field MRI images and does not require image pairs.
arXiv Detail & Related papers (2023-07-12T00:01:00Z) - Spatial and Modal Optimal Transport for Fast Cross-Modal MRI Reconstruction [54.19448988321891]
We propose an end-to-end deep learning framework that utilizes T1-weighted images (T1WIs) as auxiliary modalities to expedite T2WIs' acquisitions.
We employ Optimal Transport (OT) to synthesize T2WIs by aligning T1WIs and performing cross-modal synthesis.
We prove that the reconstructed T2WIs and the synthetic T2WIs become closer on the T2 image manifold with iterations increasing.
arXiv Detail & Related papers (2023-05-04T12:20:51Z) - High-fidelity Direct Contrast Synthesis from Magnetic Resonance
Fingerprinting [28.702553164811473]
We propose a supervised learning-based method that directly synthesizes contrast-weighted images from the MRF data without going through the quantitative mapping and spin-dynamics simulation.
In-vivo experiments demonstrate excellent image quality compared to simulation-based contrast synthesis and previous DCS methods, both visually as well as by quantitative metrics.
arXiv Detail & Related papers (2022-12-21T07:11:39Z) - Automated SSIM Regression for Detection and Quantification of Motion
Artefacts in Brain MR Images [54.739076152240024]
Motion artefacts in magnetic resonance brain images are a crucial issue.
The assessment of MR image quality is fundamental before proceeding with the clinical diagnosis.
An automated image quality assessment based on the structural similarity index (SSIM) regression has been proposed here.
arXiv Detail & Related papers (2022-06-14T10:16:54Z) - Generative Adversarial Networks (GAN) Powered Fast Magnetic Resonance
Imaging -- Mini Review, Comparison and Perspectives [5.3148259096171175]
One drawback of MRI is its comparatively slow scanning and reconstruction compared to other image modalities.
Deep Neural Networks (DNNs) have been used in sparse MRI reconstruction models to recreate relatively high-quality images.
Generative Adversarial Networks (GAN) based methods are proposed to solve fast MRI with enhanced image perceptual quality.
arXiv Detail & Related papers (2021-05-04T23:59:00Z) - A Novel Approach for Correcting Multiple Discrete Rigid In-Plane Motions
Artefacts in MRI Scans [63.28835187934139]
We propose a novel method for removing motion artefacts using a deep neural network with two input branches.
The proposed method can be applied to artefacts generated by multiple movements of the patient.
arXiv Detail & Related papers (2020-06-24T15:25:11Z) - Cine Cardiac MRI Motion Artifact Reduction Using a Recurrent Neural
Network [18.433956246011466]
We propose a recurrent neural network to simultaneously extract both spatial and temporal features from motion-blurred cine cardiac images.
The experimental results demonstrate substantially improved image quality on two clinical test datasets.
arXiv Detail & Related papers (2020-06-23T01:55:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.