IM-MoCo: Self-supervised MRI Motion Correction using Motion-Guided Implicit Neural Representations
- URL: http://arxiv.org/abs/2407.02974v1
- Date: Wed, 3 Jul 2024 10:14:33 GMT
- Title: IM-MoCo: Self-supervised MRI Motion Correction using Motion-Guided Implicit Neural Representations
- Authors: Ziad Al-Haj Hemidi, Christian Weihsbach, Mattias P. Heinrich,
- Abstract summary: Motion artifacts in Magnetic Resonance Imaging (MRI) arise due to relatively long acquisition times.
Traditional motion correction methods often fail to address severe motion, leading to distorted and unreliable results.
We present an instance-wise motion correction pipeline that leverages motion-guided Implicit Neural Representations (INRs)
Our method improves classification outcomes by at least $+1.5$ accuracy percentage points compared to motion-corrupted images.
- Score: 2.2265038612930663
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Motion artifacts in Magnetic Resonance Imaging (MRI) arise due to relatively long acquisition times and can compromise the clinical utility of acquired images. Traditional motion correction methods often fail to address severe motion, leading to distorted and unreliable results. Deep Learning (DL) alleviated such pitfalls through generalization with the cost of vanishing structures and hallucinations, making it challenging to apply in the medical field where hallucinated structures can tremendously impact the diagnostic outcome. In this work, we present an instance-wise motion correction pipeline that leverages motion-guided Implicit Neural Representations (INRs) to mitigate the impact of motion artifacts while retaining anatomical structure. Our method is evaluated using the NYU fastMRI dataset with different degrees of simulated motion severity. For the correction alone, we can improve over state-of-the-art image reconstruction methods by $+5\%$ SSIM, $+5\:db$ PSNR, and $+14\%$ HaarPSI. Clinical relevance is demonstrated by a subsequent experiment, where our method improves classification outcomes by at least $+1.5$ accuracy percentage points compared to motion-corrupted images.
Related papers
- A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
Deep neural networks have shown great potential for reconstructing high-fidelity images from undersampled measurements.
Our model is based on neural operators, a discretization-agnostic architecture.
Our inference speed is also 1,400x faster than diffusion methods.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - Motion-Informed Deep Learning for Brain MR Image Reconstruction Framework [7.639405634241267]
Motion is estimated to be present in approximately 30% of clinical MRI scans.
Deep learning algorithms have been demonstrated to be effective for both the image reconstruction task and the motion correction task.
We propose a novel method to simultaneously accelerate imaging and correct motion.
arXiv Detail & Related papers (2024-05-28T02:16:35Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
Off-resonance artifacts in magnetic resonance imaging (MRI) are visual distortions that occur when the actual resonant frequencies of spins within the imaging volume differ from the expected frequencies used to encode spatial information.
We propose to resolve these artifacts by lifting the 2D MRI reconstruction problem to 3D, introducing an additional "spectral" dimension to model this off-resonance.
arXiv Detail & Related papers (2023-11-22T05:44:51Z) - JSMoCo: Joint Coil Sensitivity and Motion Correction in Parallel MRI
with a Self-Calibrating Score-Based Diffusion Model [3.3053426917821134]
We propose to jointly estimate the motion parameters and coil sensitivity maps for under-sampled MRI reconstruction.
Our method is capable of reconstructing high-quality MRI images from sparsely-sampled k-space data, even affected by motion.
arXiv Detail & Related papers (2023-10-14T17:11:25Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - Retrospective Motion Correction in Gradient Echo MRI by Explicit Motion
Estimation Using Deep CNNs [0.0]
We propose a strategy to correct for motion artifacts using Deep Convolutional Neuronal Networks (Deep CNNs)
We show that using Deep CNNs the concepts of rigid motion compensation can be generalized to more complex motion fields.
arXiv Detail & Related papers (2023-03-30T09:16:13Z) - Automated SSIM Regression for Detection and Quantification of Motion
Artefacts in Brain MR Images [54.739076152240024]
Motion artefacts in magnetic resonance brain images are a crucial issue.
The assessment of MR image quality is fundamental before proceeding with the clinical diagnosis.
An automated image quality assessment based on the structural similarity index (SSIM) regression has been proposed here.
arXiv Detail & Related papers (2022-06-14T10:16:54Z) - Motion Correction and Volumetric Reconstruction for Fetal Functional
Magnetic Resonance Imaging Data [3.690756997172894]
Motion correction is an essential preprocessing step in functional Magnetic Resonance Imaging (fMRI) of the fetal brain.
Current motion correction approaches for fetal fMRI choose a single 3D volume from a specific acquisition timepoint.
We propose a novel framework, which estimates a high-resolution reference volume by using outlier-robust motion correction.
arXiv Detail & Related papers (2022-02-11T19:11:16Z) - Assessing Lesion Segmentation Bias of Neural Networks on Motion
Corrupted Brain MRI [3.9694334747397484]
We quantify the impact that different levels of motion artifacts have on the performance of neural networks engaged in a lesion segmentation task.
Our results suggest that a network trained using curriculum learning is effective at compensating for different levels of motion artifacts.
arXiv Detail & Related papers (2020-10-12T21:06:40Z) - A Novel Approach for Correcting Multiple Discrete Rigid In-Plane Motions
Artefacts in MRI Scans [63.28835187934139]
We propose a novel method for removing motion artefacts using a deep neural network with two input branches.
The proposed method can be applied to artefacts generated by multiple movements of the patient.
arXiv Detail & Related papers (2020-06-24T15:25:11Z) - Microvascular Dynamics from 4D Microscopy Using Temporal Segmentation [81.30750944868142]
We are able to track changes in cerebral blood volume over time and identify spontaneous arterial dilations that propagate towards the pial surface.
This new imaging capability is a promising step towards characterizing the hemodynamic response function upon which functional magnetic resonance imaging (fMRI) is based.
arXiv Detail & Related papers (2020-01-14T22:55:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.