PredNAS: A Universal and Sample Efficient Neural Architecture Search
Framework
- URL: http://arxiv.org/abs/2210.14460v1
- Date: Wed, 26 Oct 2022 04:15:58 GMT
- Title: PredNAS: A Universal and Sample Efficient Neural Architecture Search
Framework
- Authors: Liuchun Yuan and Zehao Huang and Naiyan Wang
- Abstract summary: We present a general and effective framework for Neural Architecture Search (NAS) named PredNAS.
We adopt a neural predictor as the performance predictor. Surprisingly, PredNAS can achieve state-of-the-art performances on NAS benchmarks with only a few training samples.
- Score: 20.59478264338981
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we present a general and effective framework for Neural
Architecture Search (NAS), named PredNAS. The motivation is that given a
differentiable performance estimation function, we can directly optimize the
architecture towards higher performance by simple gradient ascent.
Specifically, we adopt a neural predictor as the performance predictor.
Surprisingly, PredNAS can achieve state-of-the-art performances on NAS
benchmarks with only a few training samples (less than 100). To validate the
universality of our method, we also apply our method on large-scale tasks and
compare our method with RegNet on ImageNet and YOLOX on MSCOCO. The results
demonstrate that our PredNAS can explore novel architectures with competitive
performances under specific computational complexity constraints.
Related papers
- Efficacy of Neural Prediction-Based Zero-Shot NAS [0.04096453902709291]
We propose a novel approach for zero-shot Neural Architecture Search (NAS) using deep learning.
Our method employs Fourier sum of sines encoding for convolutional kernels, enabling the construction of a computational feed-forward graph with a structure similar to the architecture under evaluation.
Experimental results show that our approach surpasses previous methods using graph convolutional networks in terms of correlation on the NAS-Bench-201 dataset and exhibits a higher convergence rate.
arXiv Detail & Related papers (2023-08-31T14:54:06Z) - DiffusionNAG: Predictor-guided Neural Architecture Generation with Diffusion Models [56.584561770857306]
We propose a novel conditional Neural Architecture Generation (NAG) framework based on diffusion models, dubbed DiffusionNAG.
Specifically, we consider the neural architectures as directed graphs and propose a graph diffusion model for generating them.
We validate the effectiveness of DiffusionNAG through extensive experiments in two predictor-based NAS scenarios: Transferable NAS and Bayesian Optimization (BO)-based NAS.
When integrated into a BO-based algorithm, DiffusionNAG outperforms existing BO-based NAS approaches, particularly in the large MobileNetV3 search space on the ImageNet 1K dataset.
arXiv Detail & Related papers (2023-05-26T13:58:18Z) - GeNAS: Neural Architecture Search with Better Generalization [14.92869716323226]
Recent neural architecture search (NAS) approaches rely on validation loss or accuracy to find the superior network for the target data.
In this paper, we investigate a new neural architecture search measure for excavating architectures with better generalization.
arXiv Detail & Related papers (2023-05-15T12:44:54Z) - GP-NAS-ensemble: a model for NAS Performance Prediction [6.785608131249699]
GP-NAS-ensemble is proposed to predict the performance of a neural network architecture with a small training dataset.
Our method ranks second in the CVPR2022 second lightweight NAS challenge performance prediction track.
arXiv Detail & Related papers (2023-01-23T00:17:52Z) - BaLeNAS: Differentiable Architecture Search via the Bayesian Learning
Rule [95.56873042777316]
Differentiable Architecture Search (DARTS) has received massive attention in recent years, mainly because it significantly reduces the computational cost.
This paper formulates the neural architecture search as a distribution learning problem through relaxing the architecture weights into Gaussian distributions.
We demonstrate how the differentiable NAS benefits from Bayesian principles, enhancing exploration and improving stability.
arXiv Detail & Related papers (2021-11-25T18:13:42Z) - Weak NAS Predictors Are All You Need [91.11570424233709]
Recent predictor-based NAS approaches attempt to solve the problem with two key steps: sampling some architecture-performance pairs and fitting a proxy accuracy predictor.
We shift the paradigm from finding a complicated predictor that covers the whole architecture space to a set of weaker predictors that progressively move towards the high-performance sub-space.
Our method costs fewer samples to find the top-performance architectures on NAS-Bench-101 and NAS-Bench-201, and it achieves the state-of-the-art ImageNet performance on the NASNet search space.
arXiv Detail & Related papers (2021-02-21T01:58:43Z) - DrNAS: Dirichlet Neural Architecture Search [88.56953713817545]
We treat the continuously relaxed architecture mixing weight as random variables, modeled by Dirichlet distribution.
With recently developed pathwise derivatives, the Dirichlet parameters can be easily optimized with gradient-based generalization.
To alleviate the large memory consumption of differentiable NAS, we propose a simple yet effective progressive learning scheme.
arXiv Detail & Related papers (2020-06-18T08:23:02Z) - A Semi-Supervised Assessor of Neural Architectures [157.76189339451565]
We employ an auto-encoder to discover meaningful representations of neural architectures.
A graph convolutional neural network is introduced to predict the performance of architectures.
arXiv Detail & Related papers (2020-05-14T09:02:33Z) - DDPNAS: Efficient Neural Architecture Search via Dynamic Distribution
Pruning [135.27931587381596]
We propose an efficient and unified NAS framework termed DDPNAS via dynamic distribution pruning.
In particular, we first sample architectures from a joint categorical distribution. Then the search space is dynamically pruned and its distribution is updated every few epochs.
With the proposed efficient network generation method, we directly obtain the optimal neural architectures on given constraints.
arXiv Detail & Related papers (2019-05-28T06:35:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.