End-to-End Multimodal Representation Learning for Video Dialog
- URL: http://arxiv.org/abs/2210.14512v1
- Date: Wed, 26 Oct 2022 06:50:07 GMT
- Title: End-to-End Multimodal Representation Learning for Video Dialog
- Authors: Huda Alamri, Anthony Bilic, Michael Hu, Apoorva Beedu, Irfan Essa
- Abstract summary: This study proposes a new framework that combines 3D-CNN network and transformer-based networks into a single visual encoder.
The visual encoder is jointly trained end-to-end with other input modalities such as text and audio.
Experiments on the AVSD task show significant improvement over baselines in both generative and retrieval tasks.
- Score: 5.661732643450332
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Video-based dialog task is a challenging multimodal learning task that has
received increasing attention over the past few years with state-of-the-art
obtaining new performance records. This progress is largely powered by the
adaptation of the more powerful transformer-based language encoders. Despite
this progress, existing approaches do not effectively utilize visual features
to help solve tasks. Recent studies show that state-of-the-art models are
biased toward textual information rather than visual cues. In order to better
leverage the available visual information, this study proposes a new framework
that combines 3D-CNN network and transformer-based networks into a single
visual encoder to extract more robust semantic representations from videos. The
visual encoder is jointly trained end-to-end with other input modalities such
as text and audio. Experiments on the AVSD task show significant improvement
over baselines in both generative and retrieval tasks.
Related papers
- CLIP-VAD: Exploiting Vision-Language Models for Voice Activity Detection [2.110168344647122]
Voice Activity Detection (VAD) is the process of automatically determining whether a person is speaking and identifying the timing of their speech.
We introduce a novel approach leveraging Contrastive Language-Image Pretraining (CLIP) models.
Our approach outperforms several audio-visual methods despite its simplicity, and without requiring pre-training on extensive audio-visual datasets.
arXiv Detail & Related papers (2024-10-18T14:43:34Z) - Chain-of-Spot: Interactive Reasoning Improves Large Vision-Language Models [81.71651422951074]
Chain-of-Spot (CoS) method is a novel approach that enhances feature extraction by focusing on key regions of interest.
This technique allows LVLMs to access more detailed visual information without altering the original image resolution.
Our empirical findings demonstrate a significant improvement in LVLMs' ability to understand and reason about visual content.
arXiv Detail & Related papers (2024-03-19T17:59:52Z) - Unsupervised Modality-Transferable Video Highlight Detection with Representation Activation Sequence Learning [7.908887001497406]
We propose a novel model with cross-modal perception for unsupervised highlight detection.
The proposed model learns representations with visual-audio level semantics from image-audio pair data via a self-reconstruction task.
The experimental results show that the proposed framework achieves superior performance compared to other state-of-the-art approaches.
arXiv Detail & Related papers (2024-03-14T13:52:03Z) - MaMMUT: A Simple Architecture for Joint Learning for MultiModal Tasks [59.09343552273045]
We propose a decoder-only model for multimodal tasks, which is surprisingly effective in jointly learning of these disparate vision-language tasks.
We demonstrate that joint learning of these diverse objectives is simple, effective, and maximizes the weight-sharing of the model across these tasks.
Our model achieves the state of the art on image-text and text-image retrieval, video question answering and open-vocabulary detection tasks, outperforming much larger and more extensively trained foundational models.
arXiv Detail & Related papers (2023-03-29T16:42:30Z) - Reading-strategy Inspired Visual Representation Learning for
Text-to-Video Retrieval [41.420760047617506]
Cross-modal representation learning projects both videos and sentences into common spaces for semantic similarity.
Inspired by the reading strategy of humans, we propose a Reading-strategy Inspired Visual Representation Learning (RIVRL) to represent videos.
Our model RIVRL achieves a new state-of-the-art on TGIF and VATEX.
arXiv Detail & Related papers (2022-01-23T03:38:37Z) - Prompting Visual-Language Models for Efficient Video Understanding [28.754997650215486]
This paper presents a simple method to efficiently adapt one pre-trained visual-language model to novel tasks with minimal training.
To bridge the gap between static images and videos, temporal information is encoded with lightweight Transformers stacking on top of frame-wise visual features.
arXiv Detail & Related papers (2021-12-08T18:58:16Z) - Distilling Audio-Visual Knowledge by Compositional Contrastive Learning [51.20935362463473]
We learn a compositional embedding that closes the cross-modal semantic gap.
We establish a new, comprehensive multi-modal distillation benchmark on three video datasets.
arXiv Detail & Related papers (2021-04-22T09:31:20Z) - Look Before you Speak: Visually Contextualized Utterances [88.58909442073858]
We create a task for predicting utterances in a video using both visual frames and transcribed speech as context.
By exploiting the large number of instructional videos online, we train a model to solve this task at scale, without the need for manual annotations.
Our model achieves state-of-the-art performance on a number of downstream VideoQA benchmarks.
arXiv Detail & Related papers (2020-12-10T14:47:02Z) - Dynamic Graph Representation Learning for Video Dialog via Multi-Modal
Shuffled Transformers [89.00926092864368]
We present a semantics-controlled multi-modal shuffled Transformer reasoning framework for the audio-visual scene aware dialog task.
We also present a novel dynamic scene graph representation learning pipeline that consists of an intra-frame reasoning layer producing-semantic graph representations for every frame.
Our results demonstrate state-of-the-art performances on all evaluation metrics.
arXiv Detail & Related papers (2020-07-08T02:00:22Z) - Self-Supervised MultiModal Versatile Networks [76.19886740072808]
We learn representations using self-supervision by leveraging three modalities naturally present in videos: visual, audio and language streams.
We demonstrate how such networks trained on large collections of unlabelled video data can be applied on video, video-text, image and audio tasks.
arXiv Detail & Related papers (2020-06-29T17:50:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.