Chain-of-Spot: Interactive Reasoning Improves Large Vision-Language Models
- URL: http://arxiv.org/abs/2403.12966v2
- Date: Thu, 21 Mar 2024 16:26:44 GMT
- Title: Chain-of-Spot: Interactive Reasoning Improves Large Vision-Language Models
- Authors: Zuyan Liu, Yuhao Dong, Yongming Rao, Jie Zhou, Jiwen Lu,
- Abstract summary: Chain-of-Spot (CoS) method is a novel approach that enhances feature extraction by focusing on key regions of interest.
This technique allows LVLMs to access more detailed visual information without altering the original image resolution.
Our empirical findings demonstrate a significant improvement in LVLMs' ability to understand and reason about visual content.
- Score: 81.71651422951074
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the realm of vision-language understanding, the proficiency of models in interpreting and reasoning over visual content has become a cornerstone for numerous applications. However, it is challenging for the visual encoder in Large Vision-Language Models (LVLMs) to extract useful features tailored to questions that aid the language model's response. Furthermore, a common practice among existing LVLMs is to utilize lower-resolution images, which restricts the ability for visual recognition. Our work introduces the Chain-of-Spot (CoS) method, which we describe as Interactive Reasoning, a novel approach that enhances feature extraction by focusing on key regions of interest (ROI) within the image, corresponding to the posed questions or instructions. This technique allows LVLMs to access more detailed visual information without altering the original image resolution, thereby offering multi-granularity image features. By integrating Chain-of-Spot with instruct-following LLaVA-1.5 models, the process of image reasoning consistently improves performance across a wide range of multimodal datasets and benchmarks without bells and whistles and achieves new state-of-the-art results. Our empirical findings demonstrate a significant improvement in LVLMs' ability to understand and reason about visual content, paving the way for more sophisticated visual instruction-following applications. Code and models are available at https://github.com/dongyh20/Chain-of-Spot
Related papers
- ADEM-VL: Adaptive and Embedded Fusion for Efficient Vision-Language Tuning [38.26304604660713]
ADEM-VL is an efficient vision-language method that tunes models based on pretrained large language models.
Our framework surpasses existing methods by an average accuracy of 0.77% on ScienceQA dataset.
arXiv Detail & Related papers (2024-10-23T11:31:06Z) - MaVEn: An Effective Multi-granularity Hybrid Visual Encoding Framework for Multimodal Large Language Model [49.931663904599205]
MaVEn is an innovative framework designed to enhance the capabilities of Multimodal Large Language Models (MLLMs) in multi-image reasoning.
We show that MaVEn significantly enhances MLLMs' understanding in complex multi-image scenarios, while also improving performance in single-image contexts.
arXiv Detail & Related papers (2024-08-22T11:57:16Z) - From Redundancy to Relevance: Information Flow in LVLMs Across Reasoning Tasks [33.476693301050275]
We conduct experiments with truncation strategies across various LVLMs for visual question answering and image captioning tasks.
By exploring the information flow from the perspective of visual representation contribution, we observe that it tends to converge in shallow layers but diversify in deeper layers.
arXiv Detail & Related papers (2024-06-04T13:52:54Z) - Draw-and-Understand: Leveraging Visual Prompts to Enable MLLMs to Comprehend What You Want [58.091825321168514]
We introduce the Draw-and-Understand project: a new model, a multi-domain dataset, and a challenging benchmark for visual prompting.
Specifically, we propose a new end-to-end trained Multimodal Large Language Model (MLLM) that connects a vision encoder, a visual prompt encoder and an LLM.
To advance visual prompting research for MLLMs, we introduce MDVP-Data and MDVP-Bench.
arXiv Detail & Related papers (2024-03-29T16:26:20Z) - Multi-modal Auto-regressive Modeling via Visual Words [96.25078866446053]
We propose the concept of visual tokens, which maps the visual features to probability distributions over Large Multi-modal Models' vocabulary.
We further explore the distribution of visual features in the semantic space within LMM and the possibility of using text embeddings to represent visual information.
arXiv Detail & Related papers (2024-03-12T14:58:52Z) - Enhancing Visual Document Understanding with Contrastive Learning in
Large Visual-Language Models [56.76307866160105]
We propose a contrastive learning framework, termed Document Object COntrastive learning (DoCo)
DoCo leverages an auxiliary multimodal encoder to obtain the features of document objects and align them to the visual features generated by the vision encoder of Large Visual-Language Models (LVLMs)
We demonstrate that the proposed DoCo serves as a plug-and-play pre-training method, which can be employed in the pre-training of various LVLMs without inducing any increase in computational complexity during the inference process.
arXiv Detail & Related papers (2024-02-29T10:17:27Z) - Question Aware Vision Transformer for Multimodal Reasoning [14.188369270753347]
We introduce QA-ViT, a Question Aware Vision Transformer approach for multimodal reasoning.
It embeds question awareness directly within the vision encoder.
This integration results in dynamic visual features focusing on relevant image aspects to the posed question.
arXiv Detail & Related papers (2024-02-08T08:03:39Z) - Good Questions Help Zero-Shot Image Reasoning [110.1671684828904]
Question-Driven Visual Exploration (QVix) is a novel prompting strategy that enhances the exploratory capabilities of large vision-language models (LVLMs)
QVix enables a wider exploration of visual scenes, improving the LVLMs' reasoning accuracy and depth in tasks such as visual question answering and visual entailment.
Our evaluations on various challenging zero-shot vision-language benchmarks, including ScienceQA and fine-grained visual classification, demonstrate that QVix significantly outperforms existing methods.
arXiv Detail & Related papers (2023-12-04T03:18:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.