Bose-Hubbard triangular ladder in an artificial gauge field
- URL: http://arxiv.org/abs/2210.14594v1
- Date: Wed, 26 Oct 2022 10:10:35 GMT
- Title: Bose-Hubbard triangular ladder in an artificial gauge field
- Authors: Catalin-Mihai Halati, Thierry Giamarchi
- Abstract summary: We consider interacting bosonic particles on a two-leg triangular ladder in the presence of an artificial gauge field.
We show that the interplay between the frustration induced by the triangular lattice geometry and the interactions gives rise to multiple chiral quantum phases.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider interacting bosonic particles on a two-leg triangular ladder in
the presence of an artificial gauge field. We employ density matrix
renormalization group numerical simulations and analytical bosonization
calculations to study the rich phase diagram of this system. We show that the
interplay between the frustration induced by the triangular lattice geometry
and the interactions gives rise to multiple chiral quantum phases. Phase
transition between superfluid to Mott-insulating states occur, which can have
Meissner or vortex character. Furthermore, a state that explicitly breaks the
symmetry between the two legs of the ladder, the biased chiral superfluid, is
found for values of the flux close to $\pi$. In the regime of hardcore bosons,
we show that the extension of the bond order insulator beyond the case of the
fully frustrated ladder exhibits Meissner-type chiral currents. We discuss the
consequences of our findings for experiments in cold atomic systems.
Related papers
- Interaction dependence of the Hall response for the Bose-Hubbard triangular ladder [0.0]
We study the Hall response of a Bose-Hubbard triangular ladder in a magnetic field.
We consider a wide range of interaction strengths, from the weakly interacting limit to the hardcore regime.
We show that the Hall response can be employed to fingerprint the various chiral state.
arXiv Detail & Related papers (2024-09-23T17:59:32Z) - Probing quantum floating phases in Rydberg atom arrays [61.242961328078245]
We experimentally observe the emergence of the quantum floating phase in 92 neutral-atom qubits.
The site-resolved measurement reveals the formation of domain walls within the commensurate ordered phase.
As the experimental system sizes increase, we show that the wave vectors approach a continuum of values incommensurate with the lattice.
arXiv Detail & Related papers (2024-01-16T03:26:36Z) - Quantum phases of hardcore bosons with repulsive dipolar density-density interactions on two-dimensional lattices [0.0]
bosons dynamics is described by the extended-Bose-Hubbard Hamiltonian on a two-dimensional lattice.
We consider three different lattice geometries: square, honeycomb, and triangular.
Our results are of immediate relevance for experimental realisations of self-organised crystalline ordering patterns in analogue quantum simulators.
arXiv Detail & Related papers (2023-11-17T16:35:02Z) - Quantum phases of the biased two-chain-coupled Bose-Hubbard Ladder [0.6086160084025234]
We investigate the quantum phases of bosons in a two-chain-coupled ladder.
We find signatures of both insulating-to-superfluid and super-to-insulating quantum phase transitions.
We show that for infinite interaction bias, the model is amenable to some analytical treatments.
arXiv Detail & Related papers (2023-08-29T05:52:02Z) - Emergence of non-Abelian SU(2) invariance in Abelian frustrated
fermionic ladders [37.69303106863453]
We consider a system of interacting spinless fermions on a two-leg triangular ladder with $pi/2$ magnetic flux per triangular plaquette.
Microscopically, the system exhibits a U(1) symmetry corresponding to the conservation of total fermionic charge, and a discrete $mathbbZ$ symmetry.
At the intersection of the three phases, the system features a critical point with an emergent SU(2) symmetry.
arXiv Detail & Related papers (2023-05-11T15:57:27Z) - Phase diagram of Rydberg-dressed atoms on two-leg triangular ladders [50.591267188664666]
We investigate the phase diagram of hard-core bosons in a triangular ladder with next-to-nearest-neighbor interaction along each leg.
For weak interactions, Abelian bosonization predicts a spin density wave and a fully gapless Luttinger liquid phase.
The competition with the zigzag interaction generates a charge density wave, a 'polarized holonic' phase, and a crystalline phase at the filling 2/5.
arXiv Detail & Related papers (2022-07-01T12:49:04Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Phase diagram of Rydberg-dressed atoms on two-leg square ladders:
Coupling supersymmetric conformal field theories on the lattice [52.77024349608834]
We investigate the phase diagram of hard-core bosons in two-leg ladders in the presence of soft-shoulder potentials.
We show how the competition between local and non-local terms gives rise to a phase diagram with liquid phases with dominant cluster, spin, and density-wave quasi-long-range ordering.
arXiv Detail & Related papers (2021-12-20T09:46:08Z) - Exploring helical phases of matter in bosonic ladders [0.0]
Strongly correlated helical states are known to appear for specific ratios of the particle and magnetic flux densities.
We show that one of them can be accessed in systems with two-species hardcore bosons and on-site repulsions only.
arXiv Detail & Related papers (2020-10-06T14:09:16Z) - Quantum anomalous Hall phase in synthetic bilayers via twistless
twistronics [58.720142291102135]
We propose quantum simulators of "twistronic-like" physics based on ultracold atoms and syntheticdimensions.
We show that our system exhibits topologicalband structures under appropriate conditions.
arXiv Detail & Related papers (2020-08-06T19:58:05Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.